
1IT 110: Computer Organization

Instruction Set Architectures

2IT 110: Computer Organization

ISA determines instruction formats

– The LMC is a one-address architecture (an accumulator-based machine).

Instruction Set Architectures

3IT 110: Computer Organization

ISA determines instruction formats

– The LMC is a one-address architecture (an accumulator-based machine).

– e.g., the instruction ADD X

Instruction Set Architectures

ADD takes two operands. One is

implicit (the accumulator). The

other is an address (location).

4IT 110: Computer Organization

ISA determines instruction formats

– There are other instruction set architectures, all based on the number of
explicit operands.

– 0-address (stack)

– 1-address (accumulator)

– 2-address

– 3-address

Instruction Set Architectures

5IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

6IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

7IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

a

8IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

b

a

9IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

a * b

10IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

c

a * b

11IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

d

c

a * b

12IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

e

d

c

a * b

13IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

d * e

c

a * b

14IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

c – (d * e)

a * b

15IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

a * b + (c – (d * e))

16IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

17IT 110: Computer Organization

0-Address Machines

– All operands for binary operations are
implicit on the stack. Only push/pop
reference memory.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

PUSH A 1

PUSH B 1

MUL 0

PUSH C 1

PUSH D 1

PUSH E 1

MUL 0

SUB 0

ADD 0

POP A 1

Stack

In a stack-based

machine, the stack is

typically a set of very

fast registers,

minimizing trips to

memory; 6 memory

accesses, not including

instruction fetch.

18IT 110: Computer Organization

1-Address Machines

– Accumulator is a source and
destination. Second source is
explicit.

Instruction Set Architectures

19IT 110: Computer Organization

1-Address Machines

– Accumulator is a source and
destination. Second source is
explicit.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

LOAD A 1

MUL B 1

ADD C 1

STORE T1 1

LOAD D 1

MUL E 1

STORE T2 1

LOAD T1 1

SUB T2 1

STORE A 1

20IT 110: Computer Organization

1-Address Machines

– Accumulator is a source and
destination. Second source is
explicit.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

LOAD A 1

MUL B 1

ADD C 1

STORE T1 1

LOAD D 1

MUL E 1

STORE T2 1

LOAD T1 1

SUB T2 1

STORE A 1

10 memory

references, not

including

instruction fetch.

21IT 110: Computer Organization

2-Address Machines

– Two source addresses for operands.
One source is also the destination.

Instruction Set Architectures

Addr1 is both source

and destination.

22IT 110: Computer Organization

2-Address Machines

– Two source addresses for operands.
One source is also the destination.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MOVE T1, A 2

MUL T1, B 3

ADD T1, C 3

MOVE T2, D 2

MUL T2, E 3

SUB T1, T2 3

MOVE A, T1 2

23IT 110: Computer Organization

2-Address Machines

– Two source addresses for operands.
One source is also the destination.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MOVE T1, A 2

MUL T1, B 3

ADD T1, C 3

MOVE T2, D 2

MUL T2, E 3

SUB T1, T2 3

MOVE A, T1 2

Using memory-to-

memory

operations, 18

memory accesses

(not including

instruction fetch).

What if T1 and T2

were registers?

24IT 110: Computer Organization

2-Address Machines

– Two source addresses for operands.
One source is also the destination.

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MOVE R1, A 1

MUL R1, B 1

ADD R1, C 1

MOVE R2, D 1

MUL R2, E 1

SUB R1, T2 0

MOVE A, R1 1

Cuts memory

references down

to 6. This is called

a 1½ address

machine with a

load/store

architecture.

25IT 110: Computer Organization

3-Address Machines

– One destination operand,
two source operands,
all explicit

Instruction Set Architectures

26IT 110: Computer Organization

3-Address Machines

– One destination operand,
two source operands,
all explicit

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MPY T1, A, B 3

ADD T1, T1, C 3

MPY T2, D, E 3

SUB A, T1, T2 3

27IT 110: Computer Organization

3-Address Machines

– One destination operand,
two source operands,
all explicit

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MPY T1, A, B 3

ADD T1, T1, C 3

MPY T2, D, E 3

SUB A, T1, T2 3

12 memory accesses,

not including

instruction fetch.

What if T1, T2 were

registers?

28IT 110: Computer Organization

3-Address Machines

– One destination operand,
two source operands,
all explicit

– e.g., calculating
a = a * b + c – d * e

Instruction Set Architectures

Code # Memory Refs

MPY R1, A, B 2

ADD R1, R1, C 1

MPY R2, D, E 2

SUB A, R1, R2 1

6 memory accesses;

general purpose

registers make a

substantial difference.

29IT 110: Computer Organization

Comparison

– Assume 8 registers (3 bits),
32 op-codes (5 bits),
15-bit addresses,
16-bit integers.

– Which ISA accesses
memory the least?

Instruction Set Architectures

30IT 110: Computer Organization

Comparison

– Assume 8 registers (3 bits),
32 op-codes (5 bits),
15-bit addresses,
16-bit integers.

– Which ISA accesses
memory the least?

Instruction Set Architectures

Instructions Data refs Total

0-address 10 x 20 bits = 200

bits

6 x 16 bits = 96 bits 296 bits

1-address 10 x 20 bits = 200

bits

10 x 16 bits = 160 bits 360 bits

1½-address 7 x 23 bits = 161 bits 6 x 16 bits = 96 bits 257 bits

2 address 7 x 35 bits = 245 bits 18 x 16 bits = 288 bits 519 bits

3-address 4 x 50 bits = 200 bits 12 x 16 bits =192 bits 392 bits

3-address (regs) 4 x 38 bits = 152 bits 6 x 16 bits = 96 bits 248 bits

31IT 110: Computer Organization

Comparison

– Assume 8 registers (3 bits),
32 op-codes (5 bits),
15-bit addresses,
16-bit integers.

– Which ISA accesses
memory the least?

Instruction Set Architectures

Instructions Data refs Total

0-address 10 x 20 bits = 200

bits

6 x 16 bits = 96 bits 296 bits

1-address 10 x 20 bits = 200

bits

10 x 16 bits = 160 bits 360 bits

1½-address 7 x 23 bits = 161 bits 6 x 16 bits = 96 bits 257 bits

2 address 7 x 35 bits = 245 bits 18 x 16 bits = 288 bits 519 bits

3-address 4 x 50 bits = 200 bits 12 x 16 bits =192 bits 392 bits

3-address (regs) 4 x 38 bits = 152 bits 6 x 16 bits = 96 bits 248 bits

Two clear winners:

1½‐address (RISC) and

3‐address with

registers (CISC).

32IT 110: Computer Organization

Summary

– The instruction set architecture determines the format of instructions (and
therefore the assembly language).

– Four basic types with variations:

– 0-address (stack)

– 1-address (accumulator)

– 2-address (register variant is 1½-address)

– 3-address (with register variant)

– ISA dramatically affects the number of times memory is accessed.

Instruction Set Architectures

1IT 110: Computer Organization

Assembly Language

2IT 110: Computer Organization

Generations of programming languages

– First generation: programmed directly in binary using wires or switches.

Assembly Language

Image credit: http://professornerdster.com/wp-content/uploads/2012/04/altair_8800.jpeg

3IT 110: Computer Organization

Generations of programming languages

– Second generation: assembly language. Human readable, converted directly
to machine code.

Assembly Language

Image credit: http://www.coprolite.com/zhb/pooldog/grnscn.jpg

4IT 110: Computer Organization

Generations of programming languages

– Third generation: high-level languages, while loops, if-then-else, structured.
Most programming today, including object-oriented.

Assembly Language

Image credit: http://www.sunspotworld.com/Tutorial/pngs/swemul06.png

5IT 110: Computer Organization

Generations of programming languages

– Fourth generation: 1990s natural languages, non-procedural, report
generation. Use programs to generate other programs. Limited use today.

Assembly Language

Image credit: http://docs.oracle.com/cd/E13167_01/aldsp/docs25/appdev/wwimages/CrystalReportsStep4.gif

6IT 110: Computer Organization

Generations of programming languages

– Key idea: Regardless of the language of writing, computers only process
machine code.

– All non-machine code goes through a translation phase into machine code.

– Code generators

– Compilers

– Assemblers

Assembly Language

7IT 110: Computer Organization

Language translation process

– High level languages use comparison constructs, loops, variables, etc.

– Machine code is binary, directly executed by CPU.

Assembly Language

How does this… …become this?

8IT 110: Computer Organization

Language translation process

– Convert high level language to if/goto.

Assembly Language

9IT 110: Computer Organization

Language translation process

– Convert high level language
to if/goto.

Assembly Language

i = 0
j = 1
k = 0

loop: if (k – 10 == 0) goto done
fib = i + j
i = j
j = fib
print i
k = k + 1
goto loop

done: halt

Use labels for

branch targets.

10IT 110: Computer Organization

Language translation process

– Convert if/goto to assembly
(LMC here).

Assembly Language

loop: LDA k ; if (k - 10 == 0) goto done
SUB ten ;
BRZ done ;
LDA i ; fib = i + j
ADD j ;
STO fib ;
LDA j ; i = j
STO i ;
LDA fib ; j = fib
STO j ;
LDA i ; print i
OUT ;
LDA k ; k = k + 1
ADD one ;
STO k ;
BR loop ; goto loop

done: HLT ; halt

11IT 110: Computer Organization

Language translation process

– Convert if/goto to assembly
(LMC here).

Assembly Language

loop: LDA k ; if (k - 10 == 0) goto done
SUB ten ;
BRZ done ;
LDA i ; fib = i + j
ADD j ;
STO fib ;
LDA j ; i = j
STO i ;
LDA fib ; j = fib
STO j ;
LDA i ; print i
OUT ;
LDA k ; k = k + 1
ADD one ;
STO k ;
BR loop ; goto loop

done: HLT ; halt

; data section
j: DAT 0 ; i = 0
i: DAT 1 ; j = 1
k: DAT 0 ; k = 0
fib: DAT 0 ;
ten: DAT 10 ;
one: DAT 1 ;

12IT 110: Computer Organization

Language translation process

– Assemble the instructions to machine code.

Assembly Language

13IT 110: Computer Organization

Language translation process

– Assemble the
instructions to
machine code.

Assembly Language

loop: LDA k ; if (k - 10 == 0) goto done
SUB ten ;
BRZ done ;
LDA i ; fib = i + j
ADD j ;
STO fib ;
LDA j ; i = j
STO i ;
LDA fib ; j = fib
STO j ;
LDA i ; print i
OUT ;
LDA k ; k = k + 1
ADD one ;
STO k ;
BR loop ; goto loop

done: HLT ; halt

Box Code Assembler

01 520 LDA k

02 222 SUB ten

03 717 BRZ done

04 519 LDA i

05 119 ADD j

06 321 STO fib

07 519 LDA j

08 319 STO i

09 521 LDA fib

10 319 STO j

11 519 LDA i

12 902 OUT

13 520 LDA k

14 123 ADD one

15 320 STO k

16 601 BR loop

17 000 HLT

14IT 110: Computer Organization

Language translation process

– Assemble the
instructions to
machine code.

Assembly Language

loop: LDA k ; if (k - 10 == 0) goto done
SUB ten ;
BRZ done ;
LDA i ; fib = i + j
ADD j ;
STO fib ;
LDA j ; i = j
STO i ;
LDA fib ; j = fib
STO j ;
LDA i ; print i
OUT ;
LDA k ; k = k + 1
ADD one ;
STO k ;
BR loop ; goto loop

done: HLT ; halt

Box Code Assembler

01 520 LDA k

02 222 SUB ten

03 717 BRZ done

04 519 LDA i

05 119 ADD j

06 321 STO fib

07 519 LDA j

08 319 STO i

09 521 LDA fib

10 319 STO j

11 519 LDA i

12 902 OUT

13 520 LDA k

14 123 ADD one

15 320 STO k

16 601 BR loop

17 000 HLT

j is in box 18

i is in box 19

k is in box 20

fib is in box 21

ten is in box 22

one is in box 23

15IT 110: Computer Organization

Summary

– High level languages are convenient to read and write for humans.

– Computers execute only binary machine code.

– Conversion between the two is required.

– Compilers translate high level languages to machine code.

– Assemblers translate assembly language into machine code.

– Use if/goto pseudo-code as an intermediate language between high level and
assembler.

Assembly Language

16IT 110: Computer Organization

– Englander, I. (2009). The architecture of computer hardware and systems
software: an information technology approach. Wiley.

References

Instruction set
architecture

ISA
CISC VS RISC

What is an Instruction Set?

• The complete collection of instructions that are understood by
a CPU

• Machine Code

• Binary

• Usually represented by assembly codes

Instruction Set Architecture (ISA)

• Serves as an interface between software and
hardware.

• Provides a mechanism by which the software
tells the hardware what should be done.

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

Elements of an Instruction

• Operation code (Op code)
– Do this

• Source Operand reference
– To this

• Result Operand reference
– Put the answer here

• Next Instruction Reference
– When you have done that, do this...

Instruction Cycle State Diagram

Instruction Representation

• In machine code each instruction has a unique bit pattern

• For human consumption (well, programmers anyway) a
symbolic representation is used
– e.g. ADD, SUB, LOAD

• Operands can also be represented in this way
– ADD A,B

Simple Instruction Format

Instruction Types

• Data processing

• Data storage (main memory)

• Data movement (I/O)

• Program flow control

Number of Addresses (a)

• 3 addresses a=(a*b+c)-d*e

– Operand 1, Operand 2, Result

– a = b + c;

– May be a forth - next instruction (usually implicit)

– Not common

– Needs very long words to hold everything

Number of Addresses (b)

• 2 addresses a=(a*b+c)-d*e

– One address doubles as operand and result

– a = a + b

– Reduces length of instruction

– Requires some extra work

» Temporary storage to hold some results

Number of Addresses (c)

• 1 address a=(a*b+c)-d*e
– Implicit second address

– Usually a register (accumulator)

– Common on early machines

Number of Addresses (d)

• 0 (zero) addresses a=a*b+(c-(d*e))
– All addresses implicit

– Uses a stack

– e.g. push a

– push b

– add

– pop c

– c = a + b

How Many Addresses

• More addresses
– More complex (powerful?) instructions

– More registers

» Inter-register operations are quicker

– Fewer instructions per program

• Fewer addresses
– Less complex (powerful?) instructions

– More instructions per program

– Faster fetch/execution of instructions

Design Decisions (1)

• Operation repertoire
– How many ops?

– What can they do?

– How complex are they?

• Data types

• Instruction formats
– Length of op code field

– Number of addresses

Design Decisions (2)

• Registers
– Number of CPU registers available

– Which operations can be performed on which registers?

• Addressing modes

• RISC v CISC

History of RISC/CISC

• 1950s IBM instituted a research program

• 1964 Release of System/360

• Mid-1970s improved measurement tools demonstrated on CISC

• 1975 801 project initiated at IBM’s Watson Research Center

• 1979 32-bit RISC microprocessor (801) developed led by Joel Birnbaum

• 1984 MIPS developed at Stanford, as well as projects done at Berkeley

• 1988 RISC processors had taken over high-end of the workstation market

• Early 1990s IBM’s POWER (Performance Optimization With Enhanced RISC)
architecture introduced w/ the RISC System/6k

– AIM (Apple, IBM, Motorola) alliance formed, resulting in PowerPC

What is CISC?

• CISC is an acronym for Complex Instruction Set Computer and are chips that are
easy to program and which make efficient use of memory. Since the earliest
machines were programmed in assembly language and memory was slow and
expensive, the CISC philosophy made sense, and was commonly implemented in
such large computers as the PDP-11 and the DECsystem 10 and 20 machines.

• Most common microprocessor designs such as the Intel 80x86 and Motorola 68K
series followed the CISC philosophy.

• But recent changes in software and hardware technology have forced a re-
examination of CISC and many modern CISC processors are hybrids, implementing
many RISC principles.

• CISC was developed to make compiler development simpler. It shifts most of the
burden of generating machine instructions to the processor. For example, instead
of having to make a compiler write long machine instructions to calculate a square-
root, a CISC processor would have a built-in ability to do this.

CISC Attributes

The design constraints that led to the development of CISC (small amounts of slow
memory and fact that most early machines were programmed in assembly
language) give CISC instructions sets some common characteristics:

• A 2-operand format, where instructions have a source and a destination. Register
to register, register to memory, and memory to register commands. Multiple
addressing modes for memory, including specialized modes for indexing through
arrays

• Variable length instructions where the length often varies according to the
addressing mode

• Instructions which require multiple clock cycles to execute.

E.g. Pentium is considered a modern CISC processor

Most CISC hardware architectures have several characteristics in
common:

• Complex instruction-decoding logic, driven by the need for a
single instruction to support multiple addressing modes.

• A small number of general purpose registers. This is the direct
result of having instructions which can operate directly on
memory and the limited amount of chip space not dedicated to
instruction decoding, execution, and microcode storage.

• Several special purpose registers. Many CTSC designs set
aside special registers for the stack pointer, interrupt handling,
and so on. This can simplify the hardware design somewhat, at
the expense of making the instruction set more complex.

• A 'Condition code" register which is set as a side-effect of most
instructions. This register reflects whether the result of the last
operation is less than, equal to, or greater than zero and
records if certain error conditions occur.

At the time of their initial development, CISC machines used
available technologies to optimize computer performance.

• Microprogramniing is as easy as assembly language to
implement, and much less expensive than hardwiring a control
unit.

• The ease of microcoding new instructions allowed designers to
make CISC machines upwardly compatible: a new computer
could run the same programs as earlier computers because the
new computer would contain a superset of the instructions of
the earlier computers.

• As each instruction became more capable, fewer instructions
could be used to implement a given task. This made more
efficient use of the relatively slow main memory.

• Because microprogram instruction sets can be written to match
the constructs of high-level languages, the compiler does not
have to be as complicated.

CISC Disadvantages

Designers soon realised that the CISC philosophy had its own problems, including:

• Earlier generations of a processor family generally were contained as a subset in
every new version - so instruction set & chip hardware become more complex with
each generation of computers.

• So that as many instructions as possible could be stored in memory with the least
possible wasted space, individual instructions could be of almost any length - this
means that different instructions will take different amounts of clock time to
execute, slowing down the overall performance of the machine.

• Many specialized instructions aren't used frequently enough to justify their
existence -approximately 20% of the available instructions are used in a typical
program.

• CISC instructions typically set the condition codes as a side effect of the
instruction. Not only does setting the condition codes take time, but programmers
have to remember to examine the condition code bits before a subsequent
instruction changes them.

What is RISC?

• RISC?
RISC, or Reduced Instruction Set Computer. is a type of microprocessor
architecture that utilizes a small, highly-optimized set of instructions, rather than a
more specialized set of instructions often found in other types of architectures.

• History
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s
and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all
designed with a similar philosophy which has become known as RISC. Certain
design features have been characteristic of most RISC processors:

– one cycle execution time: RISC processors have a CPI (clock per instruction) of one
cycle. This is due to the optimization of each instruction on the CPU and a technique
called PIPELINING

– pipelining: a techique that allows for simultaneous execution of parts, or stages, of
instructions to more efficiently process instructions;

– large number of registers: the RISC design philosophy generally incorporates a larger
number of registers to prevent in large amounts of interactions with memory

RISC Attributes

The main characteristics of CISC microprocessors are:

• Extensive instructions.

• Complex and efficient machine instructions.

• Microencoding of the machine instructions.

• Extensive addressing capabilities for memory operations.

• Relatively few registers.

In comparison, RISC processors are more or less the opposite of the above:

• Reduced instruction set.

• Less complex, simple instructions.

• Hardwired control unit and machine instructions.

• Few addressing schemes for memory operands with only two basic instructions,
LOAD and

• STORE

• Many symmetric registers which are organised into a register file.

Pipelining

RISC Pipelines

A RISC processor pipeline operates in much the same way,

although the stages in the pipeline are different. While different

processors have different numbers of steps, they are basically

variations of these five, used in the MIPS R3000 processor:

- fetch instructions from memory

- read registers and decode the instruction

- execute the instruction or calculate an address

- access an operand in data memory

- write the result into a register

RISC Disadvantages

• There is still considerable controversy among experts about the ultimate
value of RISC architectures. Its proponents argue that RISC machines are
both cheaper and faster, and are therefore the machines of the future.

• However, by making the hardware simpler, RISC architectures put a greater
burden on the software. Is this worth the trouble because conventional
microprocessors are becoming increasingly fast and cheap anyway?

CISC versus RISC

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Register to register:
"LOAD" and "STORE"
are independent instructions

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

Transistors used for storing
complex instructions

Spends more transistors
on memory registers

Summation

• As memory speed increased, and high-level languages displaced assembly
language, the major reasons for CISC began to disappear, and computer designers
began to look at ways computer performance could be optimized beyond just
making faster hardware.

• One of their key realizations was that a sequence of simple instructions produces
the same results as a sequence of complex instructions, but can be implemented
with a simpler (and faster) hardware design. (Assuming that memory can keep up.)
RISC (Reduced Instruction Set Computers) processors were the result.

• CISC and RISC implementations are becoming more and more alike. Many of
today’s RISC chips support as many instructions as yesterday's CISC chips. And
today's CISC chips use many techniques formerly associated with RISC chips.

• To some extent, the argument is becoming moot because CISC and RISC
implementations are becoming more and more alike. Many of today's RISC chips
support as many instructions as yesterday's CISC chips. And today's CISC chips
use many techniques formerly associated with RISC chips.

CHAPTER 1:

Computers and Systems

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley University

1-2

Typical Computer Ad

▪ Is the computer fast enough to run necessary programs?

▪ Is the computer cost-effective?

▪ Will it be obsolete in 6 months?
Copyright 2010 John Wiley & Sons, Inc.

1-3

Why Study Computer System

Architecture?

▪ User

▪ Understand system capabilities and limitations

▪ Make informed decisions

▪ Improve communications with information technology

professionals

▪ Programmer

▪ Create efficient application software for specific processing

needs

▪ Systems Architect or Systems Analyst

▪ Specify computer systems and architecture to meet

application requirements

▪ Make intelligent decisions about system strategy

Copyright 2010 John Wiley & Sons, Inc.

1-4

Why Study Computer System

Architecture?
▪ System Administrator / Manager

▪ Install, configure, maintain, and upgrade computer
systems

▪ Maximize system availability and efficiency

▪ Optimize system performance

▪ Ensure system security

▪ Web Services Designer

▪ Optimize customer accessibility to Web services

▪ Optimize web system configurations

▪ Select appropriate data formats, page designs and
scripting languages

▪ Design efficient Web pages

Copyright 2010 John Wiley & Sons, Inc.

Web Browser Application Use

Copyright 2010 John Wiley & Sons, Inc. 1-5

1-6

Input-Process-Output Model (IPO)

• Input: keyboard, mouse, scanner, punch cards

• Processing: CPU executes the computer program

• Output: monitor, printer, fax machine

• Storage: hard drive, optical media, diskettes, magnetic tape

Copyright 2010 John Wiley & Sons, Inc.

Simplified IT Computer System

Layout

Copyright 2010 John Wiley & Sons, Inc. 1-7

1-8

Computer System Components

▪ Hardware
▪ Processes data by executing instructions

▪ Provides input and output

▪ Control input, output and storage components

▪ Software
▪ Applications and system software

▪ Instructions tell hardware exactly what tasks to perform and
in what order

▪ Data
▪ Fundamental representation of facts and observations

▪ Communications
▪ Sharing data and processing among different systems

Copyright 2010 John Wiley & Sons, Inc.

1-9

Hardware Component

▪ Input/Output devices

▪ Storage Devices

▪ CPU – Central Processing Unit

▪ ALU: arithmetic/logic unit

▪ CU: control unit

▪ Interface unit

▪ Memory

▪ Short-term storage for CPU calculations

Copyright 2010 John Wiley & Sons, Inc.

1-10

Typical Personal Computer System

Copyright 2010 John Wiley & Sons, Inc.

1-11

CPU: Central Processing Unit

▪ ALU: arithmetic/logic unit
▪ Performs arithmetic and Boolean logical

calculations

▪ CU: control unit
▪ Controls processing of instructions

▪ Controls movement of data within the CPU

▪ Interface unit
▪ Moves instructions and data between the CPU

and other hardware components

▪ Bus: bundle of wires that carry signals and power
between different components

Copyright 2010 John Wiley & Sons, Inc.

1-12

Memory

▪ Also known as primary storage, working

storage, working storage, and RAM (random

access memory)

▪ Consists of bits, each of which hold a value of

either 0 or 1 (8 bits = 1 byte)

▪ Holds both instructions and data of a

computer program (stored program concept)

Copyright 2010 John Wiley & Sons, Inc.

1-13

Software Component

▪ Applications

▪ Operating System

▪ API: application program

interface

▪ File management

▪ I/O

▪ Kernel

 Memory management

 Resource scheduling

 Program communication

 Security

▪ Network Module

Copyright 2010 John Wiley & Sons, Inc.

1-14

Communications Component

▪ Hardware

▪ Communication channels

 Physical connections between computer systems

 Examples: wire cable, phone lines, fiber optic cable, infrared

light, radio waves

▪ Interface hardware

 Handles communication between the computer and the

communication channel

 Modem or network interface card (NIC)

▪ Software

▪ Establish connections

▪ Control flow of data

▪ Directs data to the proper applications for use

Copyright 2010 John Wiley & Sons, Inc.

1-15

Computer Systems

All computer systems, no matter how complex,

consists of the following:

▪ At least one CPU

▪ Memory to hold programs and data

▪ I/O devices

▪ Long-term storage

Copyright 2010 John Wiley & Sons, Inc.

Computer Systems Examples

Copyright 2010 John Wiley & Sons, Inc. 1-16

IBM System z10 EC Mainframe

HP Laptop Computer

Virtualization

▪ Virtual (American Heritage Dictionary

▪ Existing or result in essence or effect

though not in actual fact, form or name

▪ Created, simulated, or carried on by means

of a computer or computer network

▪ Computer systems examples

▪ Virtual memory

▪ Virtual networks

▪ Java Virtual Machine

Copyright 2010 John Wiley & Sons, Inc. 1-17

1-18

Protocols

▪ Common ground rules of communication
between computers, I/O devices, and many
software programs

▪ Examples

▪ HTTP: between Web servers and Web
browsers

▪ TCP/IP: between computers on the
Internet and local area networks

▪ SATA: between storage devices and
computers

▪ XML,RSS, SIP: new protocols
Copyright 2010 John Wiley & Sons, Inc.

1-19

Standards

▪ Created to ensure universal compatibility of

data formats and protocols

▪ May be created by committee or may become

a de facto standard through popular use

▪ Examples:
▪ Computer languages: Java, SQL, C, JavaScript

▪ Display standards: Postscript, MPEG-2, JPEG, GIF

▪ Character set standards: ASCII, Unicode, EBCDIC

▪ Multimedia standards: MPEG-2, MPEG-4, DivX, MP3

Copyright 2010 John Wiley & Sons, Inc.

1-20

Textbook Overview

▪ Web site: http://www.wiley.com/college/englander

▪ Part 1 (Chapters 1-2)

▪ Overview of computer systems

▪ Part 2 (Chapters 3-5)

▪ Number systems and data formats

▪ Part 3 (Chapters 6-11)

▪ Computer architecture and hardware operation

▪ Part 4 (Chapters 12-14)

▪ Networks and data communications

▪ Part 5 (Chapters 15-18)

▪ Software component – operating systems

▪ Part 6 (Supplementary Chapters S1-S4)

▪ Digital logic, systems examples, instruction addressing modes,
programming tools

Copyright 2010 John Wiley & Sons, Inc.

http://www.wiley.com/college/englander

1-21

Early History

▪ 1642: Blaise Pascal invents a calculating

machine

▪ 1801: Joseph Marie Jacquard invents a loom

that uses punch cards

▪ 1800’s:

▪ Charles Babbage attempts to build an analytical

engine (mechanical computer)

▪ Augusta Ada Byron develops many of the

fundamental concepts of programming

▪ George Boole invents Boolean logic.

Copyright 2010 John Wiley & Sons, Inc.

1-22

Modern Computer Development

▪ 1937: Mark I is built (Aiken, Harvard University, IBM).
▪ First electronic computer using relays.

▪ 1939: ABC is built
▪ First fully electronic digital computer. Used vacuum tubes.

▪ 1943-46: ENIAC (Mauchly, Eckert, University of
Pennsylvania).
▪ First general purpose digital computer.

▪ 1945: Von Neumann architecture proposed.
▪ Still the standard for present day computers.

▪ 1947: Creation of transistor
▪ (Bardeen, Shockley, Brattain, Bell Labs).

▪ 1951-2: EDVAC and IAS

Copyright 2010 John Wiley & Sons, Inc.

1-23

Early Computers

Babbage’s Analytical Engine ENIAC

Copyright 2010 John Wiley & Sons, Inc.

System Software History

▪ Early computers had no operating systems and were

single user systems

▪ Programs were entered using switches for each bit or by

plugging wires into a panel

▪ 1953-54: First operating system was built by General

Motors Research Laboratories for their IBM 701

computer

▪ Other early systems

▪ FORTRAN Monitor System (FMS)

▪ IBSYS

▪ Share Operating System (SOS)

Copyright 2010 John Wiley & Sons, Inc. 1-24

Operating System Development

▪ 1963: Master Control Program (MCP) by Burroughs.

Included many modern OS features.

▪ 1964: OS/360 by IBM. Included batch processing of

programs.

▪ 1962: MIT Project MAC created a time-sharing OS

called CTSS. Shortly afterwards, MIT, Bell Labs, and

GE developed Multics (Multiplexed Information and

Computing Services).

Copyright 2010 John Wiley & Sons, Inc. 1-25

UNIX

▪ After Bell Labs withdrew from the Multics project, Ken

Thompson developed a personal operating system

called UNIX using assembly language.

▪ Dennis Ritchie developed the programming language

C which was used to rewrite much of UNIX in a high-

level language.

▪ UNIX introduced

▪ A hierarchical file system

▪ The shell concept

▪ Document production and formatting

▪ Tools for networked and distributed processing

Copyright 2010 John Wiley & Sons, Inc. 1-26

Graphical User Interfaces

▪ 1960s: Doug Englebart (Stanford

Research Institute)

▪ Invented windows and a mouse interface

▪ 1970s: Xerox PARC

▪ Creates a practical windowing system for

the Dynabook project

▪ 1980s: Steve Jobs (Apple)

▪ Developed the Apple Lisa and MacIntosh

Copyright 2010 John Wiley & Sons, Inc. 1-27

IBM PC

▪ 1982: Stand-alone, single user computer

▪ PC-DOS, MS-DOS (disk operating system)

▪ Later versions of DOS added

▪ Hierarchical directory file storage

▪ File redirection

▪ Better memory management

▪ Windowing systems

▪ Windows 2.0, Windows 3.1, Windows 95

▪ Windows NT, Windows XP, Windows Vista

▪ Windows 7

Copyright 2010 John Wiley & Sons, Inc. 1-28

Communications

▪ 1960s and 1970s: users communicated on multiterminal

computer systems using talk and email facilities

▪ 1971: Ray Tomlinson creates the standard

username@hostname email standard

▪ Modems permitted users to login to office systems,

electronic bulletin board systems, Compuserve, AOL, and

Prodigy

▪ 1969: ARPANET begun

▪ 1985: First TCP-IP wide area network

▪ 1991: Tim Berners Lee develops the concepts that

become the World Wide Web

▪ 1993: Max Andreessen develops Mosaic, the first

graphical browser
Copyright 2010 John Wiley & Sons, Inc. 1-29

1-30

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

Copyright 2010 John Wiley & Sons, Inc.

CHAPTER 2:
Introduction to Systems Concepts

and Systems Architecture

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley University

What is a system?

▪ What do the following systems have in

common?

1. Plumbing system

2. Solar system

3. Home network system

4. Inventory control system

Copyright 2010 John Wiley & Sons, Inc. 2-2

Plumbing System

Copyright 2010 John Wiley & Sons, Inc. 2-3

Solar System

Copyright 2010 John Wiley & Sons, Inc. 2-4

Home Network System

Copyright 2010 John Wiley & Sons, Inc. 2-5

Inventory Control System

Copyright 2010 John Wiley & Sons, Inc. 2-6

Definition of a System

▪ “A systems is a collection of

components linked together and

organized in such a way as to be

recognizable as a single unit.”

▪ Linked components of a system also

define the boundary for the system

▪ The environment is anything outside of

the system
Copyright 2010 John Wiley & Sons, Inc. 2-7

General Representation of a

System

Copyright 2010 John Wiley & Sons, Inc. 2-8

System Decomposition

▪ Components

▪ May be irreducible or

▪ May be subsystems

▪ Decomposition

▪ The division of a system into its

components and linkages

▪ Hierarchical

Copyright 2010 John Wiley & Sons, Inc. 2-9

System Architecture

“The fundamental properties, and the

patterns of relationships, connections,

constraints, and linkages among the

components and between the system

and its environment are known

collectively as the architecture of the

system”

Copyright 2010 John Wiley & Sons, Inc. 2-10

Abstractions of Systems

▪ How are the following two abstractions

of a business system different from one

another?

▪ How are these abstractions different

from the real business system?

Copyright 2010 John Wiley & Sons, Inc. 2-11

Business Organization Chart

Copyright 2010 John Wiley & Sons, Inc. 2-12

Business Application

Architecture

Copyright 2010 John Wiley & Sons, Inc. 2-13

IT System Architectures

▪ Distributed processing systems

▪ Client-Server Computing

 2-tier architecture

 3-tier architecture

 N-tier architecture

 Web-Based Computing

▪ Peer-to-Peer Computing

Copyright 2010 John Wiley & Sons, Inc. 2-14

Client-Server Computing

▪ A program on a client computer

requests services from a program on a

server computer

▪ Examples:

▪ Email services, file services, print services,

directory services, Web services, database

services, application services, remote

access services

Copyright 2010 John Wiley & Sons, Inc. 2-15

Basic Client-Server Architecture

Copyright 2010 John Wiley & Sons, Inc. 2-16

Advantages of Client-Server

Architecture

▪ Centralization of services permits

▪ easier administration of services by IT

professionals

▪ easier availability and location by users

▪ consistency of resources, such as files and

data, can be managed and assured

▪ more efficient and cost-effective hardware

procurement through purchasing a small

number of very powerful computers

Copyright 2010 John Wiley & Sons, Inc. 2-17

Clients and Servers on a Network

Copyright 2010 John Wiley & Sons, Inc. 2-18

Multi-tier Architectures

▪ Two-tier architecture

▪ Two computers are involved in a service.

▪ Example: Web-browser and Web server

model used in intranets and on the Internet

▪ Three-tier architecture

▪ Three computers are involved in a service

▪ Example: client computer, Web server,

database server

▪ N-tier architecture
Copyright 2010 John Wiley & Sons, Inc. 2-19

Three-tier Architecture

Copyright 2010 John Wiley & Sons, Inc. 2-20

Peer-to-Peer Computing

▪ Computers on a network are treated as equals

▪ Each computer can share resources with the other

computers on the network

▪ Disadvantages

▪ Difficult to establish centralized control of services

▪ Difficult to locate services

▪ Difficult to synchronize versions of files or software

▪ Difficult to secure network from unauthorized access and

from viruses

▪ Advantages

▪ Sharing files between personal computers

▪ Internet file sharing

Copyright 2010 John Wiley & Sons, Inc. 2-21

Hybrid Model of Computing

▪ Client-server technology used to locate

systems and files

▪ Then systems can participate in peer-to-

peer transactions

▪ Examples

▪ Instant messaging

▪ Skype

▪ Napster

Copyright 2010 John Wiley & Sons, Inc. 2-22

Google: System Architecture

▪ Provide powerful, fast search capability for material

on the Internet

▪ Derive income from advertising that is targeted to

each user based on their searches

▪ Basic requirements

▪ Capable of responding to millions of simultaneous requests

from all over the world

▪ Perform a web crawl of the Internet retrieve and organize

data

▪ Establish ranking of results with appropriately targeted

advertising

▪ High reliability of the system

▪ System is easily scalable and cost effective

Copyright 2010 John Wiley & Sons, Inc. 2-23

Google Data Center Search

Application Architecture

Copyright 2010 John Wiley & Sons, Inc. 2-24

Simplified Google System

Hardware Architecture

Copyright 2010 John Wiley & Sons, Inc. 2-25

Copyright 2010 John Wiley & Sons, Inc.

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

2-26

CHAPTER 3: Number Systems

The Architecture of Computer Hardware

and Systems Software & Networking:

An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne, Bentley

University

Why Binary?

▪ Early computer design was decimal

▪ Mark I and ENIAC

▪ John von Neumann proposed binary data

processing (1945)

▪ Simplified computer design

▪ Used for both instructions and data

▪ Natural relationship between

on/off switches and

calculation using Boolean logic

On Off

True False

Yes No

1 0

3-2Copyright 2010 John Wiley & Sons, Inc.

Counting and Arithmetic

▪ Decimal or base 10 number system
▪ Origin: counting on the fingers

▪ “Digit” from the Latin word digitus meaning “finger”

▪ Base: the number of different digits including
zero in the number system
▪ Example: Base 10 has 10 digits, 0 through 9

▪ Binary or base 2

▪ Bit (binary digit): 2 digits, 0 and 1

▪ Octal or base 8: 8 digits, 0 through 7

▪ Hexadecimal or base 16:
16 digits, 0 through F

▪ Examples: 1010 = A16; 1110 = B16

3-3Copyright 2010 John Wiley & Sons, Inc.

Keeping Track of the Bits

▪ Bits commonly stored and manipulated

in groups

▪ 8 bits = 1 byte

▪ 4 bytes = 1 word (in many systems)

▪ Number of bits used in calculations

▪ Affects accuracy of results

▪ Limits size of numbers manipulated by the

computer

3-4Copyright 2010 John Wiley & Sons, Inc.

Numbers: Physical Representation

▪ Different numerals,
same number of
oranges
▪ Cave dweller: IIIII

▪ Roman: V

▪ Arabic: 5

▪ Different bases, same
number of oranges
▪ 510

▪ 1012

▪ 123

3-5Copyright 2010 John Wiley & Sons, Inc.

Number System

▪ Roman: position independent

▪ Modern: based on positional notation (place
value)
▪ Decimal system: system of positional notation

based on powers of 10.

▪ Binary system: system of positional notation
based powers of 2

▪ Octal system: system of positional notation based
on powers of 8

▪ Hexadecimal system: system of positional
notation based powers of 16

3-6Copyright 2010 John Wiley & Sons, Inc.

Positional Notation: Base 10

Place 102 101 100

Value 100 10 1

Evaluat

e

5 x 100 2 x 10 7 x1

Sum 500 20 7

1’s place10’s place

527 = 5 x 102 + 2 x 101 + 7 x 100

100’s place

3-7Copyright 2010 John Wiley & Sons, Inc.

Positional Notation: Octal

6248 = 40410

Place 82 81 80

Value 64 8 1

Evaluate 6 x 64 2 x 8 4 x 1

Sum for

Base 10
384 16 4

64’s place 8’s place 1’s place

3-8Copyright 2010 John Wiley & Sons, Inc.

Positional Notation:
Hexadecimal

6,70416 = 26,37210

Place 163 162 161 160

Value 4,096 256 16 1

Evaluate 6 x

4,096

7 x 256 0 x 16 4 x 1

Sum for

Base 10
24,576 1,792 0 4

4,096’s place 256’s place 1’s place16’s place

3-9Copyright 2010 John Wiley & Sons, Inc.

Positional Notation: Binary

Place 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

Evaluate 1 x 128 1 x 64 0 x 32 1 x16 0 x 8 1 x 4 1 x 2 0 x 1

Sum for

Base 10
128 64 0 16 0 4 2 0

1101 01102 = 21410

3-10Copyright 2010 John Wiley & Sons, Inc.

Range of Possible Numbers

▪ R = BK where
▪ R = range

▪ B = base

▪ K = number of digits

▪ Example #1: Base 10, 2 digits
▪ R = 102 = 100 different numbers (0…99)

▪ Example #2: Base 2, 16 digits
▪ R = 216 = 65,536 or 64K

▪ 16-bit PC can store 65,536 different number
values

3-11Copyright 2010 John Wiley & Sons, Inc.

Decimal Range for Bit Widths

Bits Digits Range

1 0+ 2 (0 and 1)

4 1+ 16 (0 to 15)

8 2+ 256

10 3 1,024 (1K)

16 4+ 65,536 (64K)

20 6 1,048,576 (1M)

32 9+ 4,294,967,296 (4G)

64 19+ Approx. 1.6 x 1019

128 38+ Approx. 2.6 x 1038

3-12Copyright 2010 John Wiley & Sons, Inc.

Base or Radix

▪ Base:

▪ The number of different symbols required to

represent any given number

▪ The larger the base, the more numerals are

required

▪ Base 10: 0,1, 2,3,4,5,6,7,8,9

▪ Base 2: 0,1

▪ Base 8: 0,1,2, 3,4,5,6,7

▪ Base 16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

3-13Copyright 2010 John Wiley & Sons, Inc.

Number of Symbols
vs. Number of Digits

▪ For a given number, the larger the base

▪ the more symbols required

▪ but the fewer digits needed

▪ Example #1:

▪ 6516 10110 1458 110 01012

▪ Example #2:

▪ 11C16 28410 4348 1 0001 11002

3-14Copyright 2010 John Wiley & Sons, Inc.

Counting in Base 2

Binary

Number

Equivalent Decimal

Number8’s (23) 4’s (22) 2’s (21) 1’s (20)

0 0 x 20 0

1 1 x 20 1

10 1 x 21 0 x 20 2

11 1 x 21 1 x 20 3

100 1 x 22 4

101 1 x 22 1 x 20 5

110 1 x 22 1 x 21 6

111 1 x 22 1 x 21 1 x 20 7

1000 1 x 23 8

1001 1 x 23 1 x 20 9

1010 1 x 23 1 x 21 10

3-15Copyright 2010 John Wiley & Sons, Inc.

Base 10 Addition Table

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8
etc

9 10 11 12 13

310 + 610 = 910

3-16Copyright 2010 John Wiley & Sons, Inc.

Base 8 Addition Table

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

38 + 68 = 118

(no 8 or 9,

of course)

3-17Copyright 2010 John Wiley & Sons, Inc.

Base 10 Multiplication Table

x 0 1 2 3 4 5 6 7 8 9

0 0

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 10 12 14 16 18

3 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 5 10 15 20 25 30 35 40 45

6 6 12 18 24 30 36 42 48 54

7 7 14 21 28 35 42 49 56 63

etc.

310 x 610 = 1810

3-18Copyright 2010 John Wiley & Sons, Inc.

Base 8 Multiplication Table

x 0 1 2 3 4 5 6 7

0 0

1 1 2 3 4 5 6 7

2 2 4 6 10 12 14 16

3 0 3 6 11 14 17 22 25

4 4 10 14 20 24 30 34

5 5 12 17 24 31 36 43

6 6 14 22 30 36 44 52

7 7 16 25 34 43 52 61

38 x 68 = 228

3-19Copyright 2010 John Wiley & Sons, Inc.

Addition

Base Problem Largest Single Digit

Decimal
6

+3
9

Octal
6

+1
7

Hexadecimal
6

+9
F

Binary
1

+0
1

3-20Copyright 2010 John Wiley & Sons, Inc.

Addition

Base Problem Carry Answer

Decimal
6

+4
Carry the 10 10

Octal
6

+2
Carry the 8 10

Hexadecimal
6

+A
Carry the 16 10

Binary
1

+1
Carry the 2 10

3-21Copyright 2010 John Wiley & Sons, Inc.

Binary Arithmetic

1 1 1 1 1

1 1 0 1 1 0 1

+ 1 0 1 1 0

1 0 0 0 0 0 1 1

3-22Copyright 2010 John Wiley & Sons, Inc.

Binary Arithmetic

▪ Addition

▪ Boolean using

XOR and AND

▪ Multiplication

▪ AND

▪ Shift

▪ Division

+ 0 1

0 0 1

1 1 10

x 0 1

0 0 0

1 0 1

3-23Copyright 2010 John Wiley & Sons, Inc.

Binary Arithmetic: Boolean Logic

▪ Boolean logic without performing arithmetic
▪ EXCLUSIVE-OR

 Output is “1” only if either input, but not both inputs, is a “1”

▪ AND (carry bit)

 Output is “1” if and only both inputs are a “1”

1 1 1 1 1

1 1 0 1 1 0 1

+ 1 0 1 1 0

1 0 0 0 0 0 1 1

3-24Copyright 2010 John Wiley & Sons, Inc.

Binary Multiplication

▪ Boolean logic without performing

arithmetic
▪ AND (carry bit)

 Output is “1” if and only both inputs are a “1”

▪ Shift

 Shifting a number in any base left one digit multiplies

its value by the base

 Shifting a number in any base right one digit divides its

value by the base

 Examples:

 1010 shift left = 10010 1010 shift right = 110

 102 shift left = 1002 102 shift right = 12

3-25Copyright 2010 John Wiley & Sons, Inc.

Binary Multiplication

1 1 0 1

1 0 1

1 1 0 1 1’s place

0 2’s place

1 1 0 1 4’s place (bits shifted to line up with 4’s place of multiplier)

1 0 0 0 0 0 1 Result (AND)

3-26Copyright 2010 John Wiley & Sons, Inc.

Converting from Base 10

Power

Base
8 7 6 5 4 3 2 1 0

2 256 128 64 32 16 8 4 2 1

8 32,768 4,096 512 64 8 1

16 65,536 4,096 256 16 1

▪ Powers Table

3-27Copyright 2010 John Wiley & Sons, Inc.

From Base 10 to Base 2

4210 = 1010102

Power

Base
6 5 4 3 2 1 0

2 64 32 16 8 4 2 1

1 0 1 0 1 0

Integer 42/32

= 1

Remainder

10/16

= 0

10

10/8

= 1

2

2/4

= 0

2

2/2

= 1

0

0/1

= 0

010

3-28Copyright 2010 John Wiley & Sons, Inc.

From Base 10 to Base 2

Base 10 42

2) 42 (0 Least significant bit

2) 21 (1

2) 10 (0

2) 5 (1

2) 2 (0

2) 1 Most significant bit

Base 2 101010

Remainder

Quotient

3-29Copyright 2010 John Wiley & Sons, Inc.

From Base 10 to Base 16

5,73510 = 166716

Power

Base
4 3 2 1 0

16 65,536 4,096 256 16 1

1 6 6 7

Integer 5,735 /4,096

= 1

1,639 / 256

= 6

103 /16

= 6

7

Remainder 5,735 - 4,096

= 1,639

1,639 –1,536

= 103

103 – 96

= 7

3-30Copyright 2010 John Wiley & Sons, Inc.

From Base 10 to Base 16

Base 10 8,039

16) 8,039 (7 Least significant bit

16) 502 (6

16) 31 (15

16) 1 (1 Most significant bit

16) 0

Base 16 1F67

Quotient

Remainder

3-31Copyright 2010 John Wiley & Sons, Inc.

From Base 8 to Base 10

72638 = 3,76310

Power 83 82 81 80

512 64 8 1

x 7 x 2 x 6 x 3

Sum for

Base 10
3,584 128 48 3

3-32Copyright 2010 John Wiley & Sons, Inc.

From Base 8 to Base 10

72638 = 3,76310

7

x 8

56 + 2 = 58

x 8

464 + 6 = 470

x 8

3760 + 3 = 3,763

3-33Copyright 2010 John Wiley & Sons, Inc.

From Base 16 to Base 2

▪ The nibble approach

▪ Hex easier to read and write than binary

▪ Why hexadecimal?

 Modern computer operating systems and networks

present variety of troubleshooting data in hex format

Base

16

1 F 6 7

Base 2 0001 1111 0110 0111

3-34Copyright 2010 John Wiley & Sons, Inc.

Fractions

▪ Number point or radix point

▪ Decimal point in base 10

▪ Binary point in base 2

▪ No exact relationship between fractional

numbers in different number bases

▪ Exact conversion may be impossible

3-35Copyright 2010 John Wiley & Sons, Inc.

Decimal Fractions

▪ Move the number point one place to the right

▪ Effect: multiplies the number by the base number

▪ Example: 139.010 139010

▪ Move the number point one place to the left

▪ Effect: divides the number by the base number

▪ Example: 139.010 13.910

3-36Copyright 2010 John Wiley & Sons, Inc.

Fractions: Base 10 and Base 2

Place 10-1 10-2 10-3 10-4

Value 1/10 1/100 1/1000 1/10000

Evaluate 2 x 1/10 5 x 1/100 8 x 1/1000 9 x1/1000

Sum .2 .05 .008 .0009

.1010112 = 0.67187510

Place 2-1 2-2 2-3 2-4 2-5 2-6

Value 1/2 1/4 1/8 1/16 1/32 1/64

Evaluate 1 x 1/2 0 x 1/4 1x 1/8 0 x 1/16 1 x 1/32 1 x 1/64

Sum .5 0.125 0.03125 0.015625

.258910

3-37Copyright 2010 John Wiley & Sons, Inc.

Fractions: Base 10 and Base 2

▪ No general relationship between fractions of

types 1/10k and 1/2k

▪ Therefore a number representable in base 10 may

not be representable in base 2

▪ But: the converse is true: all fractions of the form

1/2k can be represented in base 10

▪ Fractional conversions from one base to

another are stopped

▪ If there is a rational solution or

▪ When the desired accuracy is attained

3-38Copyright 2010 John Wiley & Sons, Inc.

Mixed Number Conversion

▪ Integer and fraction parts must be

converted separately

▪ Radix point: fixed reference for the

conversion

▪ Digit to the left is a unit digit in every base

▪ B0 is always 1 regardless of the base

3-39Copyright 2010 John Wiley & Sons, Inc.

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

3-40Copyright 2010 John Wiley & Sons, Inc.

CHAPTER 4:

Data Formats

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley University

Data Formats

▪ Computers

▪ Process and store all forms of data in binary

format

▪ Human communication

▪ Includes language, images and sounds

▪ Data formats:

▪ Specifications for converting data into computer-

usable form

▪ Define the different ways human data may be

represented, stored and processed by a computer

4-2Copyright 2010 John Wiley & Sons, Inc.

Sources of Data

▪ Binary input
▪ Begins as discrete input

▪ Example: keyboard input such as A 1+2=3 math

▪ Keyboard generates a binary number code for each key

▪ Analog
▪ Continuous data such as sound or images

▪ Requires hardware to convert data into binary numbers

Computer

1101000101010101…

Input

device
A 1+2=3 math

Figure 3.1 with this

color scheme

4-3Copyright 2010 John Wiley & Sons, Inc.

Common Data Representations

Type of Data Standard(s)

Alphanumeric Unicode, ASCII, EDCDIC

Image (bitmapped) ▪GIF (graphical image format)

▪TIF (tagged image file format)

▪PNG (portable network graphics)

Image (object) PostScript, JPEG, SWF (Macromedia

Flash), SVG

Outline graphics and fonts PostScript, TrueType

Sound WAV, AVI, MP3, MIDI, WMA

Page description PDF (Adobe Portable Document

Format), HTML, XML

Video Quicktime, MPEG-2, RealVideo, WMV

4-4Copyright 2010 John Wiley & Sons, Inc.

Internal Data Representation

▪ Reflects the
▪ Complexity of input source

▪ Type of processing required

▪ Trade-offs
▪ Accuracy and resolution

 Simple photo vs. painting in an art book

▪ Compactness (storage and transmission)
 More data required for improved accuracy and resolution

 Compression represents data in a more compact form

 Metadata: data that describes or interprets the meaning of data

▪ Ease of manipulation:

 Processing simple audio vs. high-fidelity sound

▪ Standardization
 Proprietary formats for storing and processing data (WordPerfect vs.

Word)

 De facto standards: proprietary standards based on general user
acceptance (PostScript)

4-5Copyright 2010 John Wiley & Sons, Inc.

Data Types: Numeric

▪ Used for mathematical manipulation

▪ Add, subtract, multiply, divide

▪ Types

▪ Integer (whole number)

▪ Real (contains a decimal point)

▪ Covered in Chapters 4 and 5

4-6Copyright 2010 John Wiley & Sons, Inc.

Data Types: Alphanumeric

▪ Alphanumeric:
▪ Characters: b T

▪ Number digits: 7 9

▪ Punctuation marks: ! ;

▪ Special-purpose characters: $ &

▪ Numeric characters vs. numbers
▪ Both entered as ordinary characters

▪ Computer converts into numbers for calculation
 Examples: Variables declared as numbers by the

programmer (Salary$ in BASIC)

▪ Treated as characters if processed as text
 Examples: Phone numbers, ZIP codes

4-7Copyright 2010 John Wiley & Sons, Inc.

Alphanumeric Codes

▪ Arbitrary choice of bits to represent

characters

▪ Consistency: input and output device must

recognize same code

▪ Value of binary number representing

character corresponds to placement in the

alphabet

 Facilitates sorting and searching

4-8Copyright 2010 John Wiley & Sons, Inc.

Representing Characters

▪ ASCII - most widely used coding

scheme

▪ EBCDIC: IBM mainframe (legacy)

▪ Unicode: developed for worldwide use

4-9Copyright 2010 John Wiley & Sons, Inc.

ASCII

▪ Developed by ANSI (American National
Standards Institute)

▪ Represents

▪ Latin alphabet, Arabic numerals, standard
punctuation characters

▪ Plus small set of accents and other
European special characters

▪ ASCII

▪ 7-bit code: 128 characters

4-10Copyright 2010 John Wiley & Sons, Inc.

ASCII Reference Table

MSD

LSD 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P p

1 SOH DC1 ! 1 A Q a W

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACJ SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

7416

111 0100

4-11Copyright 2010 John Wiley & Sons, Inc.

EBCDIC

▪ Extended Binary Coded Decimal Interchange

Code developed by IBM

▪ Restricted mainly to IBM or IBM compatible

mainframes

▪ Conversion software to/from ASCII available

▪ Common in archival data

▪ Character codes differ from ASCII

ASCII EBCDIC

Space 2016 4016

A 4116 C116

b 6216 8216

4-12Copyright 2010 John Wiley & Sons, Inc.

Unicode

▪ Most common 16-bit form represents 65,536
characters

▪ ASCII Latin-I subset of Unicode
▪ Values 0 to 255 in Unicode table

▪ Multilingual: defines codes for
▪ Nearly every character-based alphabet

▪ Large set of ideographs for Chinese, Japanese
and Korean

▪ Composite characters for vowels and syllabic
clusters required by some languages

▪ Allows software modifications for local-
languages

4-13Copyright 2010 John Wiley & Sons, Inc.

Collating Sequence

▪ Alphabetic sorting if software handles mixed

upper- and lowercase codes

▪ In ASCII, numbers collate first; in EBCDIC,

last

▪ ASCII collating sequence for string of

characters
Letters Numeric Characters

Adam A d a m 1 011 0001

Adamian A d a m i a n 12 011 0001 011 0010

Adams A d a m s 2 011 0010

4-14Copyright 2010 John Wiley & Sons, Inc.

2 Classes of Codes

▪ Printing characters

▪ Produced on the screen or printer

▪ Control characters

▪ Control position of output on screen or printer

▪ Cause action to occur

▪ Communicate status between computer and I/O

device

 VT: vertical tab LF: Line feed

 ESC: provides extensions by changing the meaning of a

specified number of contiguous following characters

 BEL: bell rings DEL: delete current character

4-15Copyright 2010 John Wiley & Sons, Inc.

Keyboard Input

▪ Scan code
▪ Two different scan codes on keyboard

 One generated when key is struck and another when key
is released

▪ Converted to Unicode, ASCII or EBCDIC by
software in terminal or PC

▪ Advantage
▪ Easily adapted to different languages or keyboard

layout

▪ Separate scan codes for key press/release for
multiple key combinations

 Examples: shift and control keys

4-16Copyright 2010 John Wiley & Sons, Inc.

Other Alphanumeric Input

▪ OCR (optical character reader)
▪ Scans text and inputs it as character data

▪ Used to read specially encoded characters
 Example: magnetically printed check numbers

▪ Bar Code Readers
▪ Used in applications that require fast, accurate and repetitive input

with minimal employee training

▪ Examples: supermarket checkout counters and inventory control

▪ Magnetic stripe reader: alphanumeric data from credit cards

▪ RFID: store and transmit data between RFID tags and computers

▪ Voice
▪ Digitized audio recording common but conversion to alphanumeric

data difficult

▪ Requires knowledge of sound patterns in a language
(phonemes) plus rules for pronunciation, grammar, and syntax

4-17Copyright 2010 John Wiley & Sons, Inc.

Image Data

▪ Photographs, figures, icons, drawings, charts and
graphs

▪ Two approaches:
▪ Bitmap or raster images of photos and paintings with

continuous variation

▪ Object or vector images composed of graphical objects like
lines and curves defined geometrically

▪ Differences include:
▪ Quality of the image

▪ Storage space required

▪ Time to transmit

▪ Ease of modification

4-18Copyright 2010 John Wiley & Sons, Inc.

Bitmap Images

▪ Used for realistic images with continuous variations in
shading, color, shape and texture
▪ Examples:

 Scanned photos

 Clip art generated by a paint program

▪ Preferred when image contains large amount of detail
and processing requirements are fairly simple

▪ Input devices:
▪ Scanners

▪ Digital cameras and video capture devices

▪ Graphical input devices like mice and pens

▪ Managed by photo editing software or paint software
▪ Editing tools to make tedious bit by bit process easier

4-19Copyright 2010 John Wiley & Sons, Inc.

Bitmap Images

▪ Each individual pixel (pi(x)cture element) in a

graphic stored as a binary number

▪ Pixel: A small area with associated coordinate

location

▪ Example: each point below represented by a 4-bit

code corresponding to 1 of 16 shades of gray

4-20Copyright 2010 John Wiley & Sons, Inc.

Bitmap Display

▪ Monochrome: black or white

▪ 1 bit per pixel

▪ Gray scale: black, white or 254 shades
of gray

▪ 1 byte per pixel

▪ Color graphics: 16 colors, 256 colors,
or 24-bit true color (16.7 million colors)

▪ 4, 8, and 24 bits respectively

4-21Copyright 2010 John Wiley & Sons, Inc.

Storing Bitmap Images

▪ Frequently large files
▪ Example: 600 rows of 800 pixels with 1 byte for

each of 3 colors ~1.5MB file

▪ File size affected by
▪ Resolution (the number of pixels per inch)

 Amount of detail affecting clarity and sharpness of an
image

▪ Levels: number of bits for displaying shades of
gray or multiple colors

 Palette: color translation table that uses a code for each
pixel rather than actual color value

▪ Data compression

4-22Copyright 2010 John Wiley & Sons, Inc.

GIF (Graphics Interchange Format)

▪ First developed by CompuServe in 1987

▪ GIF89a enabled animated images
▪ allows images to be displayed sequentially at fixed

time sequences

▪ Color limitation: 256

▪ Image compressed by LZW (Lempel-Zif-
Welch) algorithm

▪ Preferred for line drawings, clip art and
pictures with large blocks of solid color

▪ Lossless compression

4-23Copyright 2010 John Wiley & Sons, Inc.

GIF (Graphics Interchange Format)

4-24Copyright 2010 John Wiley & Sons, Inc.

JPEG
(Joint Photographers Expert Group)

▪ Allows more than 16 million colors

▪ Suitable for highly detailed photographs
and paintings

▪ Employs lossy compression algorithm
that

▪ Discards data to decreases file size and
transmission speed

▪ May reduce image resolution, tends to
distort sharp lines

4-25Copyright 2010 John Wiley & Sons, Inc.

Object Images

▪ Created by drawing packages or output from
spreadsheet data graphs

▪ Composed of lines and shapes in various
colors

▪ Computer translates geometric formulas to
create the graphic

▪ Storage space depends on image complexity
▪ number of instructions to create lines, shapes, fill

patterns

▪ Movies Shrek and Toy Story use object
images

4-26Copyright 2010 John Wiley & Sons, Inc.

Object Images

▪ Based on mathematical formulas

▪ Easy to move, scale and rotate without
losing shape and identity as bitmap images
may

▪ Require less storage space than bitmap
images

▪ Cannot represent photos or paintings

▪ Cannot be displayed or printed directly

▪ Must be converted to bitmap since output
devices except plotters are bitmap

4-27Copyright 2010 John Wiley & Sons, Inc.

PostScript

▪ Page description language: list of
procedures and statements that
describe each of the objects to be
printed on a page

▪ Stored in ASCII or Unicode text file

▪ Interpreter program in computer or output
device reads PostScript to generate image

▪ Scalable font support

▪ Font outline objects specified like other
objects

4-28Copyright 2010 John Wiley & Sons, Inc.

Bitmap vs. Object Images

Bitmap (Raster) Object (Vector)

Pixel map Geometrically defined shapes

Photographic quality Complex drawings

Paint software Drawing software

Larger storage requirements Higher computational requirements

Enlarging images produces jagged

edges

Objects scale smoothly

Resolution of output limited by

resolution of image

Resolution of output limited by

output device

4-29Copyright 2010 John Wiley & Sons, Inc.

Video Images

▪ Require massive amount of data
▪ Video camera producing full screen 640 x 480 pixel true color

image at 30 frames/sec 27.65 MB of data/sec

▪ 1-minute film clip 1.6 GB storage

▪ Options for reducing file size: decrease size of image,
limit number of colors, reduce frame rate

▪ Method depends on how video delivered to users
▪ Streaming video: video displayed as it is downloaded from the

Web server

▪ Local data (file on DVD or downloaded onto system) for
higher quality

 MPEG-2: movie quality images with high compression require
substantial processing capability

4-30Copyright 2010 John Wiley & Sons, Inc.

Audio Data

▪ Transmission and processing requirements

less demanding than those for video

▪ Waveform audio: digital representation of

sound

▪ MIDI (Musical Instrument Digital Interface):

instructions to recreate or synthesize sounds

▪ Analog sound converted to digital values by

A-to-D converter

4-31Copyright 2010 John Wiley & Sons, Inc.

Waveform Audio

Sampling rate

normally 50KHz

4-32Copyright 2010 John Wiley & Sons, Inc.

Sampling Rate

▪ Number of times per second that sound is

measured during the recording process.

▪ 1000 samples per second = 1 KHz (kilohertz)

▪ Example: Audio CD sampling rate = 44.1KHz

▪ Height of each sample saved as:

▪ 8-bit number for radio-quality recordings

▪ 16-bit number for high-fidelity recordings

▪ 2 x 16-bits for stereo

4-33Copyright 2010 John Wiley & Sons, Inc.

Audio Formats

▪ MP3
▪ Derivative of MPEG-2 (ISO Moving Picture

Experts Group)

▪ Uses psychoacoustic compression techniques to
reduce storage requirements

▪ WAV
▪ Developed by Microsoft as part of its multimedia

specification

▪ General-purpose format for storing and
reproducing small snippets of sound

4-34Copyright 2010 John Wiley & Sons, Inc.

Audio Data Formats

4-35Copyright 2010 John Wiley & Sons, Inc.

WAV file

Data Compression

▪ Compression: recoding data so that it requires fewer
bytes of storage space.

▪ Compression ratio: the amount file is shrunk

▪ Lossless: inverse algorithm restores data to exact
original form
▪ Examples: GIF, PCX, TIFF

▪ Lossy: trades off data degradation for file size and
download speed
▪ Much higher compression ratios, often 10 to 1

▪ Example: JPEG

▪ Common in multimedia

▪ MPEG-2: uses both forms for ratios of 100:1

4-36Copyright 2010 John Wiley & Sons, Inc.

Page Description Languages

▪ Describe layout of objects on a displayed or

printed page

▪ Objects may include text, object images,

bitmap images, multimedia objects, and other

data formats

▪ Examples

▪ HTML, XHTML, XML

▪ PDF

▪ Postscript

Copyright 2010 John Wiley & Sons, Inc. 4-37

Internal Computer Data Format

▪ All data stored as binary numbers

▪ Interpreted based on

▪ Operations computer can perform

▪ Data types supported by programming

language used to create application

4-38Copyright 2010 John Wiley & Sons, Inc.

5 Simple Data Types

▪ Boolean: 2-valued variables or constants with values
of true or false

▪ Char: Variable or constant that holds alphanumeric
character

▪ Enumerated
▪ User-defined data types with possible values listed in

definition
 Type DayOfWeek = Mon, Tues, Wed, Thurs, Fri, Sat, Sun

▪ Integer: positive or negative whole numbers

▪ Real
▪ Numbers with a decimal point

▪ Numbers whose magnitude, large or small, exceeds
computer’s capability to store as an integer

4-39Copyright 2010 John Wiley & Sons, Inc.

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

4-40Copyright 2010 John Wiley & Sons, Inc.

CHAPTER 5:

Representing Numerical Data

The Architecture of Computer Hardware

and Systems Software & Networking:

An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley University

Number Representation

▪ Numbers can be represented as a

combination of

▪ Value or magnitude

▪ Sign (plus or minus)

▪ Decimal (if necessary)

5-2Copyright 2010 John Wiley & Sons, Inc

Unsigned Numbers: Integers

▪ Unsigned whole number or integer

▪ Direct binary equivalent of decimal integer

Decimal Binary BCD

68 = 0100 0100 = 0110 1000

= 26 + 22 = 64 + 4 = 68 = 22 + 21 = 6 23 = 8

99

(largest 8-bit

BCD)

= 0110 0011 = 1001 1001

= 26 + 25 + 21 + 20 =

= 64 + 32 + 2 + 1 = 99

= 23 + 20 23 + 20

= 9 9

255

(largest 8-bit

binary)

= 1111 1111 = 0010 0101 0101

= 28 – 1 = 255 = 21 22 + 20 22 + 20

= 2 5 5

▪ 4 bits: 0 to 9 ▪ 16 bits: 0 to 9,999

▪ 8 bits: 0 to 99 ▪ 32 bits: 0 to 99,999,999

5-3Copyright 2010 John Wiley & Sons, Inc

Value Range: Binary vs. BCD

▪ BCD range of values < conventional binary

representation

▪ Binary: 4 bits can hold 16 different values (0 to 15)

▪ BCD: 4 bits can hold only 10 different values (0 to 9)

No. of Bits BCD Range Binary Range

4 0-9 1 digit 0-15 1+ digit

8 0-99 2 digits 0-255 2+ digits

12 0-999 3 digits 0-4,095 3+ digits

16 0-9,999 4 digits 0-65,535 4+ digits

20 0-99,999 5 digits 0-1 million 6 digits

24 0-999,999 6 digits 0-16 million 7+ digits

32 0-99,999,999 8 digits 0-4 billion 9+ digits

64 0-(1016-1) 16 digits 0-16 quintillion 19+ digits

5-4Copyright 2010 John Wiley & Sons, Inc

Conventional Binary vs. BCD

▪ Binary representation generally

preferred

▪ Greater range of value for given number of

bits

▪ Calculations easier

▪ BCD often used in business

applications to maintain decimal

rounding and decimal precision

5-5Copyright 2010 John Wiley & Sons, Inc

Simple BCD Multiplication

5-6Copyright 2010 John Wiley & Sons, Inc

5-7

Packed Decimal Format

▪ Real numbers representing dollars and cents

▪ Support by business-oriented languages like

COBOL

▪ IBM System 370/390 and Compaq Alpha

Copyright 2010 John Wiley & Sons, Inc

Signed-Integer Representation

▪ No obvious direct way to represent the

sign in binary notation

▪ Options:

▪ Sign-and-magnitude representation

▪ 1’s complement

▪ 2’s complement (most common)

5-8Copyright 2010 John Wiley & Sons, Inc

Sign-and-Magnitude

▪ Use left-most bit for sign
▪ 0 = plus; 1 = minus

▪ Total range of integers the same
▪ Half of integers positive; half negative

▪ Magnitude of largest integer half as large

▪ Example using 8 bits:
▪ Unsigned: 1111 1111 = +255

▪ Signed: 0111 1111 = +127
1111 1111 = -127

▪ Note: 2 values for 0:
+0 (0000 0000) and -0 (1000 0000)

5-9Copyright 2010 John Wiley & Sons, Inc

Difficult Calculation Algorithms

▪ Sign-and-magnitude algorithms complex and difficult
to implement in hardware
▪ Must test for 2 values of 0

▪ Useful with BCD

▪ Order of signed number and carry/borrow makes a difference

▪ Example: Decimal addition algorithm

Addition:

2 Positive Numbers

Addition:

1 Signed Number

4

+2

6

4

- 2

2

2

- 4

-2

12

- 4

8
5-10Copyright 2010 John Wiley & Sons, Inc

Complementary Representation

▪ Sign of the number does not have to be

handled separately

▪ Consistent for all different signed

combinations of input numbers

▪ Two methods

▪ Radix: value used is the base number

▪ Diminished radix: value used is the base number

minus 1

 9’s complement: base 10 diminished radix

 1’s complement: base 2 diminished radix

5-11Copyright 2010 John Wiley & Sons, Inc

9’s Decimal Complement

▪ Taking the complement: subtracting a value from a standard
basis value

▪ Decimal (base 10) system diminished radix complement

▪ Radix minus 1 = 10 – 1 9 as the basis

▪ 3-digit example: base value = 999

▪ Range of possible values 0 to 999 arbitrarily split at 500

Numbers Negative Positive

Representation method Complement Number itself

Range of decimal numbers -499 -000 +0 499

Calculation 999 minus number none

Representation example 500 999 0 499

– Increasing value +999 – 499

5-12Copyright 2010 John Wiley & Sons, Inc

9’s Decimal Complement

▪ Necessary to specify number of digits or word

size

▪ Example: representation of 3-digit number

▪ First digit = 0 through 4 positive number

▪ First digit = 5 through 9 negative number

▪ Conversion to sign-and-magnitude number

for 9’s complement

▪ 321 remains 321

▪ 521: take the complement (999 – 521) = – 478

5-13Copyright 2010 John Wiley & Sons, Inc

Choice of Representation

▪ Must be consistent with rules of normal

arithmetic

▪ - (-value) = value

▪ If we complement the value twice, it

should return to its original value

▪ Complement = basis – value

▪ Complement twice

 Basis – (basis – value) = value

5-14Copyright 2010 John Wiley & Sons, Inc

Modular Addition

▪ Counting upward on scale corresponds to addition

▪ Example in 9’s complement: does not cross the

modulus

+250 +250

Representation 500 649 899 999 0 170 420 499

Number

represented

-499 -350 -100 -000 0 170 420 499

+250 +250

5-15Copyright 2010 John Wiley & Sons, Inc

Addition with Wraparound

▪ Count to the right to add a negative number

▪ Wraparound scale used to extend the range for the
negative result
▪ Counting left would cross the modulus and give incorrect

answer because there are 2 values for 0 (+0 and -0)

+699

Representation 500 999 0 200 499 500 899 999

Number

represented

-499 -000 0 200 499 -499 -100 -000

-300

Wrong Answer!! +699

Representation 500 898 999 0 200 499

Number

represented

-499 -101 -000 0 200 499

- 300

5-16Copyright 2010 John Wiley & Sons, Inc

Addition with End-around Carry

▪ Count to the right crosses the modulus

▪ End-around carry

▪ Add 2 numbers in 9’s complementary arithmetic

▪ If the result has more digits than specified, add carry

to the result

+300

Representation 500 799 999 0 99 499

Number

represented

-499 -200 -000 0 100 499

+300

(1099) 799

300

1099

1

100

5-17Copyright 2010 John Wiley & Sons, Inc

Overflow

▪ Fixed word size has a fixed range size

▪ Overflow: combination of numbers that adds

to result outside the range

▪ End-around carry in modular arithmetic

avoids problem

▪ Complementary arithmetic: numbers out of

range have the opposite sign

▪ Test: If both inputs to an addition have the same

sign and the output sign is different, an overflow

occurred

5-18Copyright 2010 John Wiley & Sons, Inc

1’s Binary Complement

▪ Taking the complement: subtracting a value from a standard basis
value
▪ Binary (base 2) system diminished radix complement

▪ Radix minus 1 = 2 – 1 1 as the basis

▪ Inversion: change 1’s to 0’s and 0’s to 1s
▪ Numbers beginning with 0 are positive

▪ Numbers beginning with 1 are negative

▪ 2 values for zero

▪ Example with 8-bit binary numbers

Numbers Negative Positive

Representation method Complement Number itself

Range of decimal numbers -12710 -010 +010 12710

Calculation Inversion None

Representation example 10000000 11111111 00000000 01111111

5-19Copyright 2010 John Wiley & Sons, Inc

Conversion between

Complementary Forms

▪ Cannot convert directly between 9’s

complement and 1’s complement

▪ Modulus in 3-digit decimal: 999

 Positive range 499

▪ Modulus in 8-bit binary:

11111111 or 25510

 Positive range 01111111 or 12710

▪ Intermediate step: sign-and-magnitude

representation

5-20Copyright 2010 John Wiley & Sons, Inc

Addition

▪ Add 2 positive 8-bit

numbers

▪ Add 2 8-bit numbers

with different signs

▪ Take the 1’s

complement of 58

(i.e., invert)

0011 1010

1100 0101

0010 1101 = 45

1100 0101 = –58

1111 0010 = –13

0010 1101 = 45

0011 1010 = 58

0110 0111 = 103

0000 1101

8 + 4 + 1 = 13
Invert to get

magnitude

5-21Copyright 2010 John Wiley & Sons, Inc

Addition with Carry

▪ 8-bit number

▪ Invert

0000 0010 (210)

1111 1101

▪ Add

▪ 9 bits

End-around carry

0110 1010 = 106

1111 1101 = –2

10110 0111

+1

0110 1000 = 104

5-22Copyright 2010 John Wiley & Sons, Inc

Subtraction

▪ 8-bit number

▪ Invert

0101 1010 (9010)

1010 0101

▪ Add

▪ 9 bits

End-around carry

0110 1010 = 106

-0101 1010 = 90

0110 1010 = 106

–1010 0101 = 90

10000 1111

+1

0001 0000 = 16

5-23Copyright 2010 John Wiley & Sons, Inc

Overflow

▪ 8-bit number
▪ 256 different numbers

▪ Positive numbers:
0 to 127

▪ Add
▪ Test for overflow

▪ 2 positive inputs
produced negative
result overflow!

▪ Wrong answer!

▪ Programmers beware: some high-level
languages, e.g., some versions of BASIC, do
not check for overflow adequately

0100 0000 = 64

0100 0001 = 65

1000 0001 -126

0111 1110

12610

Invert to get

magnitude

5-24Copyright 2010 John Wiley & Sons, Inc

10’s Complement

▪ Create complementary system with a single 0

▪ Radix complement: use the base for
complementary operations
▪ Decimal base: 10’s complement

▪ Example: Modulus 1000 as the as reflection point

Numbers Negative Positive

Representation method Complement Number itself

Range of decimal numbers -500 -001 0 499

Calculation 1000 minus number none

Representation example 500 999 0 499

5-25Copyright 2010 John Wiley & Sons, Inc

Examples with 3-Digit Numbers

▪ Example 1:
▪ 10’s complement representation of 247

 247 (positive number)

▪ 10’s complement of 227

 1000 – 247 = 753 (negative number)

▪ Example 2:
▪ 10’s complement of 17

 1000 – 017 = 983

▪ Example 3:
▪ 10’s complement of 777

 Negative number because first digit is 7

 1000 – 777 = 223

 Signed value = -223

5-26Copyright 2010 John Wiley & Sons, Inc

Alternative Method
for 10’s Complement

▪ Based on 9’s complement

▪ Example using 3-digit number

▪ Note: 1000 = 999 + 1

▪ 9’s complement = 999 – value

▪ Rewriting
 10’s complement = 1000 – value = 999 + 1 – value

▪ Or: 10’s complement = 9’s complement + 1

▪ Computationally easier especially when
working with binary numbers

5-27Copyright 2010 John Wiley & Sons, Inc

2’s Complement

▪ Modulus = a base 2 “1” followed by specified
number of 0’s
▪ For 8 bits, the modulus = 1000 0000

▪ Two ways to find the complement
▪ Subtract value from the modulus or invert

Numbers Negative Positive

Representation method Complement Number itself

Range of decimal

numbers

-12810 -110 +010 12710

Calculation Inversion None

Representation

example

10000000 11111111 00000000 01111111

5-28Copyright 2010 John Wiley & Sons, Inc

Estimating Integer Size

▪ Positive numbers begin with 0

▪ Small negative numbers (close to 0)

begin with multiple 0’s

▪ 1111 1110 = -2 in 8-bit 2’s complements

▪ 1000 0000 = -128, largest negative 2’s

complements

▪ Invert all 1’s and 0’s and approximate the

value

5-29Copyright 2010 John Wiley & Sons, Inc

Overflow and Carry Conditions

▪ Carry flag: set when the result of an

addition or subtraction exceeds fixed

number of bits allocated

▪ Overflow: result of addition or

subtraction overflows into the sign bit

5-30Copyright 2010 John Wiley & Sons, Inc

5-31

Exponential Notation

▪ Also called scientific notation

▪ 4 specifications required for a number
1. Sign (“+” in example)

2. Magnitude or mantissa (12345)

3. Sign of the exponent (“+” in 105)

4. Magnitude of the exponent (5)

▪ Plus
5. Base of the exponent (10)

6. Location of decimal point (or other base) radix point

▪ 12345 ▪ 12345 x 100

▪ 0.12345 x 105
▪ 123450000 x 10-4

Copyright 2010 John Wiley & Sons, Inc

5-32

Summary of Rules

Sign of the mantissa Sign of the exponent

-0.35790 x 10-6

Location
of decimal
point

Mantissa Base Exponent

Copyright 2010 John Wiley & Sons, Inc

5-33

Format Specification

▪ Predefined format, usually in 8 bits

▪ Increased range of values (two digits of

exponent) traded for decreased precision

(two digits of mantissa)

Sign of the mantissa

SEEMMMMM

2-digit Exponent 5-digit Mantissa

Copyright 2010 John Wiley & Sons, Inc

5-34

Format

▪ Mantissa: sign digit in sign-magnitude format

▪ Assume decimal point located at beginning of

mantissa

▪ Excess-N notation: Complementary notation

▪ Pick middle value as offset where N is the

middle value

Representation 0 49 50 99

Exponent being represented -50 -1 0 49

– Increasing value +

Copyright 2010 John Wiley & Sons, Inc

5-35

Overflow and Underflow

▪ Possible for the number to be too large or too

small for representation

Copyright 2010 John Wiley & Sons, Inc

5-36

Floating Point Calculations

▪ Addition and subtraction

▪ Exponent and mantissa treated separately

▪ Exponents of numbers must agree

 Align decimal points

 Least significant digits may be lost

▪ Mantissa overflow requires exponent again

shifted right

Copyright 2010 John Wiley & Sons, Inc

5-37

Addition and Subtraction

Add 2 floating point numbers 05199520

+ 04967850

Align exponents 05199520

0510067850

Add mantissas; (1) indicates a carry (1)0019850

Carry requires right shift 05210019(850)

Round 05210020

Check results

05199520 = 0.99520 x 101 = 9.9520

04967850 = 0.67850 x 10-1 = 0.06785

= 10.01985

In exponential form = 0.1001985 x 102

Copyright 2010 John Wiley & Sons, Inc

5-38

Multiplication and Division

▪ Mantissas: multiplied or divided

▪ Exponents: added or subtracted

▪ Normalization necessary to
 Restore location of decimal point

 Maintain precision of the result

▪ Adjust excess value since added twice
 Example: 2 numbers with exponent = 3

represented in excess-50 notation

 53 + 53 =106

 Since 50 added twice, subtract: 106 – 50 =56

Copyright 2010 John Wiley & Sons, Inc

5-39

Multiplication and Division

▪ Maintaining precision:
▪ Normalizing and rounding multiplication

 Multiply 2 numbers
05220000

x 04712500

 Add exponents, subtract offset 52 + 47 – 50 = 49

 Multiply mantissas 0.20000 x 0.12500 = 0.025000000

 Normalize the results 04825000

 Round 05210020

 Check results

05220000 = 0.20000 x 102

04712500 = 0.125 x 10-3

= 0.0250000000 x 10-1

 Normalizing and rounding = 0.25000 x 10-2

Copyright 2010 John Wiley & Sons, Inc

5-40

Floating Point in the Computer

▪ Typical floating point format

▪ 32 bits provide range ~10-38 to 10+38

▪ 8-bit exponent = 256 levels

 Excess-128 notation

▪ 23/24 bits of mantissa: approximately 7 decimal

digits of precision

Copyright 2010 John Wiley & Sons, Inc

5-41

IEEE 754 Standard

▪ 32-bit Floating Point Value Definition

Exponent Mantissa Value

0 ±0 0

0 Not 0 ±2-126 x 0.M

1-254 Any ±2-127 x 1.M

255 ±0 ±

255 not 0 special condition

Copyright 2010 John Wiley & Sons, Inc

5-42

Conversion: Base 10 and Base 2

▪ Two steps

▪ Whole and fractional parts of numbers with

an embedded decimal or binary point must

be converted separately

▪ Numbers in exponential form must be

reduced to a pure decimal or binary mixed

number or fraction before the conversion

can be performed

Copyright 2010 John Wiley & Sons, Inc

5-43

Conversion: Base 10 and Base 2

▪ Convert 253.7510 to binary floating point form

▪ Multiply number by 100 25375

▪ Convert to binary

equivalent

110 0011 0001 1111 or 1.1000

1100 0111 11 x 214

▪ IEEE Representation 0 10001101 10001100011111

▪ Divide by binary floating point equivalent of 10010 to

restore original decimal value

Excess-127

Exponent = 127 + 14

MantissaSign

Copyright 2010 John Wiley & Sons, Inc

5-44

Programming Considerations

▪ Integer advantages
▪ Easier for computer to perform

▪ Potential for higher precision

▪ Faster to execute

▪ Fewer storage locations to save time and
space

▪ Most high-level languages provide 2 or
more formats
▪ Short integer (16 bits)

▪ Long integer (64 bits)

Copyright 2010 John Wiley & Sons, Inc

5-45

Programming Considerations

▪ Real numbers

▪ Variable or constant has fractional part

▪ Numbers take on very large or very

small values outside integer range

▪ Program should use least precision

sufficient for the task

▪ Packed decimal attractive alternative

for business applications

Copyright 2010 John Wiley & Sons, Inc

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

5-46Copyright 2010 John Wiley & Sons, Inc

CHAPTER 6:

The Little Man Computer

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley University

Copyright 2010 John Wiley & Sons, Inc. 6-2

The Little Man Computer

Copyright 2010 John Wiley & Sons, Inc. 6-3

Mailboxes: Address vs. Content

▪ Addresses are consecutive starting at 00

and ending at 99

▪ Content may be

▪ Data, a three digit number, or

▪ Instructions

Address Content

Copyright 2010 John Wiley & Sons, Inc. 6-4

Content: Instructions

▪ Op code

▪ In LMC, represented by a single digit

▪ Operation code

▪ Arbitrary mnemonic

▪ Operand

▪ In LMC, represented by two digits following the op code

▪ Object to be manipulated

 Data or

 Address of data

Address Content

Op code Operand

Copyright 2010 John Wiley & Sons, Inc. 6-5

Magic!

▪ Load program into memory

▪ Put data into In Basket

Copyright 2010 John Wiley & Sons, Inc. 6-6

Assembly Language

▪ Specific to a CPU

▪ 1 to 1 correspondence between
assembly language instruction and
binary (machine) language instruction

▪ Mnemonics (short character sequence)
represent instructions

▪ Used when programmer needs precise
control over hardware, e.g., device
drivers

Copyright 2010 John Wiley & Sons, Inc. 6-7

Instruction Set

Arithmetic 1xx ADD

2xx SUB

Data Movement 3xx STORE

5xx LOAD

Input/Output 901 INPUT

902 Output

Machine Control

(coffee break)

000 HALT

COB

Copyright 2010 John Wiley & Sons, Inc. 6-8

Input/Output

▪ Move data between calculator and

in/out baskets

Content

Op Code Operand

(address)

IN (input) 9 01

OUT (output) 9 02

Copyright 2010 John Wiley & Sons, Inc. 6-9

LMC Input/Output

IN

OUT

Copyright 2010 John Wiley & Sons, Inc. 6-10

Internal Data Movement

▪ Between mailbox and calculator

Content

Op Code Operand

(address)

STO
(store)

3 xx

LDA (load) 5 xx

Copyright 2010 John Wiley & Sons, Inc. 6-11

LMC Internal Data

LDA

STO

Copyright 2010 John Wiley & Sons, Inc. 6-12

Arithmetic Instructions

▪ Read mailbox

▪ Perform operation in the calculator

Content

Op Code Operand

(address)

ADD 1 xx

SUB 2 xx

Copyright 2010 John Wiley & Sons, Inc. 6-13

LMC Arithmetic Instructions

ADD

SUB

Copyright 2010 John Wiley & Sons, Inc. 6-14

Data storage location

▪ Physically identical to instruction

mailbox

▪ Not located in instruction sequence

▪ Identified by DAT mnemonic

Copyright 2010 John Wiley & Sons, Inc. 6-15

Simple Program: Add 2 Numbers

▪ Assume data is stored

in mailboxes with

addresses >90

▪ Write instructions

Input a #

Store the #

Input a #

Add

Output the
number

Copyright 2010 John Wiley & Sons, Inc. 6-16

Program to Add 2 Numbers

Mailbox Code Instruction Description

00 901 ;input 1st Number

01 399 ;store data

02 901 ;input 2nd Number

03 199 ;add 1st # to 2nd #

04 902 ;output result

05 000 ;stop

99 000 ;data

Copyright 2010 John Wiley & Sons, Inc. 6-17

Program to Add 2 Numbers:
Using Mnemonics

Mailbox Mnemonic Instruction Description

00 IN ;input 1st Number

01 STO 99 ;store data

02 IN ;input 2nd Number

03 ADD 99 ;add 1st # to 2nd #

04 OUT ;output result

05 COB ;stop

99 DAT 00 ;data

Copyright 2010 John Wiley & Sons, Inc. 6-18

Program Control

▪ Branching (executing an instruction out

of sequence)

▪ Changes the address in the counter

▪ Halt
Content

Op Code Operand

(address)

BR (Jump) 6 xx

BRZ (Branch on 0) 7 xx

BRP (Branch on +) 8 xx

COB (stop) 0 (ignore)

Copyright 2010 John Wiley & Sons, Inc. 6-19

LMC Instruction Set

Arithmetic 1xx ADD

2xx SUB

Data Movement 3xx STORE

5xx LOAD

BR 6xx JUMP

BRZ 7xx BRANC ON 0

BRP 8xx BRANCH ON +

Input/Output 901 INPUT

902 OUTPUT

Machine Control

(coffee break)

000 HALT

COB

Copyright 2010 John Wiley & Sons, Inc. 6-20

Find Positive Difference of 2 Numbers

00 IN 901

01 STO 10 310

02 IN 901

03 STO 11 311

04 SUB 10 210

05 BRP 08 808 ;test

06 LDA 10 510 ;if negative, reverse order

07 SUB 11 211

08 OUT 902 ;print result and

09 COB 000 ;stop

10 DAT 00 000 ;used for data

11 DAT 00 000 ;used for data

Copyright 2010 John Wiley & Sons, Inc. 6-21

Instruction Cycle

▪ Fetch: Little Man finds out what

instruction he is to execute

▪ Execute: Little Man performs the work.

Copyright 2010 John Wiley & Sons, Inc. 6-22

Fetch Portion of
Fetch and Execute Cycle

1. Little Man reads the
address from the
location counter

2. He walks over to
the mailbox that
corresponds to the
location counter

Copyright 2010 John Wiley & Sons, Inc. 6-23

Fetch, cont.

3. And reads the
number on the slip
of paper (he puts
the slip back in case
he needs to read it
again later)

Copyright 2010 John Wiley & Sons, Inc. 6-24

Execute Portion

1. The Little Man goes to the

mailbox address specified
in the instruction he just
fetched.

2. He reads the number in that

mailbox (he remembers to
replace it in case he needs it
later).

Copyright 2010 John Wiley & Sons, Inc. 6-25

Execute, cont.

3. He walks over to the

calculator and punches the
number in.

4. He walks over to the location

counter and clicks it, which
gets him ready to fetch the
next instruction.

Copyright 2010 John Wiley & Sons, Inc. 6-26

von Neumann Architecture (1945)

▪ Stored program concept

▪ Memory is addressed linearly

▪ Memory is addressed without regard to

content

Copyright 2010 John Wiley & Sons, Inc. 6-27

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

CHAPTER 7:

The CPU and Memory

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley College

CPU: Major Components

▪ ALU (arithmetic logic unit)
▪ Performs calculations and comparisons

▪ CU (control unit)
▪ Performs fetch/execute cycle

 Accesses program instructions and issues commands to
the ALU

 Moves data to and from CPU registers and other
hardware components

▪ Subcomponents:
 Memory management unit: supervises fetching

instructions and data from memory

 I/O Interface: sometimes combined with memory
management unit as Bus Interface Unit

Copyright 2010 John Wiley & Sons, Inc. 7-2

System Block Diagram

Copyright 2010 John Wiley & Sons, Inc. 7-3

The Little Man Computer

Copyright 2010 John Wiley & Sons, Inc. 7-4

Concept of Registers

▪ Small, permanent storage locations within the

CPU used for a particular purpose

▪ Manipulated directly by the Control Unit

▪ Wired for specific function

▪ Size in bits or bytes (not in MB like memory)

▪ Can hold data, an address or an instruction

▪ How many registers does the LMC have?

▪ What are the registers in the LMC?

Copyright 2010 John Wiley & Sons, Inc. 7-5

Registers

▪ Use of Registers
▪ Scratchpad for currently executing program

 Holds data needed quickly or frequently

▪ Stores information about status of CPU and currently
executing program

 Address of next program instruction

 Signals from external devices

▪ General Purpose Registers

▪ User-visible registers

▪ Hold intermediate results or data values, e.g., loop counters

▪ Equivalent to LMC’s calculator

▪ Typically several dozen in current CPUs

Copyright 2010 John Wiley & Sons, Inc. 7-6

Special-Purpose Registers

▪ Program Count Register (PC)
▪ Also called instruction pointer

▪ Instruction Register (IR)
▪ Stores instruction fetched from memory

▪ Memory Address Register (MAR)

▪ Memory Data Register (MDR)

▪ Status Registers
▪ Status of CPU and currently executing program

▪ Flags (one bit Boolean variable) to track condition
like arithmetic carry and overflow, power failure,
internal computer error

Copyright 2010 John Wiley & Sons, Inc. 7-7

Register Operations

▪ Stores values from other locations

(registers and memory)

▪ Addition and subtraction

▪ Shift or rotate data

▪ Test contents for conditions such as

zero or positive

Copyright 2010 John Wiley & Sons, Inc. 7-8

Operation of Memory

▪ Each memory location has a unique address

▪ Address from an instruction is copied to the

MAR which finds the location in memory

▪ CPU determines if it is a store or retrieval

▪ Transfer takes place between the MDR and

memory

▪ MDR is a two way register

Copyright 2010 John Wiley & Sons, Inc. 7-9

Relationship between MAR,

MDR and Memory
Address Data

Copyright 2010 John Wiley & Sons, Inc. 7-10

MAR-MDR Example

Copyright 2010 John Wiley & Sons, Inc. 7-11

Visual Analogy of Memory

Copyright 2010 John Wiley & Sons, Inc. 7-12

Individual Memory Cell

Copyright 2010 John Wiley & Sons, Inc. 7-13

Memory Capacity

Determined by two factors

1. Number of bits in the MAR
 LMC = 100 (00 to 99)

 2K where K = width of the register in bits

2. Size of the address portion of the
instruction
 4 bits allows 16 locations

 8 bits allows 256 locations

 32 bits allows 4,294,967,296 or 4 GB

Copyright 2010 John Wiley & Sons, Inc. 7-14

RAM: Random Access Memory

▪ DRAM (Dynamic RAM)

▪ Most common, cheap, less electrical power, less

heat, smaller space

▪ Volatile: must be refreshed (recharged with power)

1000’s of times each second

▪ SRAM (static RAM)

▪ Faster and more expensive than DRAM

▪ Volatile

▪ Small amounts are often used in cache memory

for high-speed memory access

Copyright 2010 John Wiley & Sons, Inc. 7-15

Nonvolatile Memory

▪ ROM
▪ Read-only Memory

▪ Holds software that is not expected to change
over the life of the system

▪ EEPROM
▪ Electrically Erasable Programmable ROM

▪ Flash Memory
▪ Faster than disks but more expensive

▪ Uses hot carrier injection to store bits of data

▪ Slow rewrite time compared to RAM

▪ Useful for nonvolatile portable computer storage

Copyright 2010 John Wiley & Sons, Inc. 7-16

Fetch-Execute Cycle

▪ Two-cycle process because both

instructions and data are in memory

▪ Fetch

▪ Decode or find instruction, load from

memory into register and signal ALU

▪ Execute

▪ Performs operation that instruction requires

▪ Move/transform data

Copyright 2010 John Wiley & Sons, Inc. 7-17

LMC vs. CPU

Fetch and Execute Cycle

Copyright 2010 John Wiley & Sons, Inc. 7-18

Load Fetch/Execute Cycle

1. PC → MAR Transfer the address from the

PC to the MAR

2. MDR → IR Transfer the instruction to the

IR

3. IR[address] → MAR Address portion of the

instruction loaded in MAR

4. MDR → A Actual data copied into the

accumulator

5. PC + 1 → PC Program Counter incremented

Copyright 2010 John Wiley & Sons, Inc. 7-19

Store Fetch/Execute Cycle

1. PC → MAR Transfer the address from the

PC to the MAR

2. MDR → IR Transfer the instruction to the

IR

3. IR[address] → MAR Address portion of the

instruction loaded in MAR

4. A → MDR* Accumulator copies data into

MDR

5. PC + 1 → PC Program Counter incremented

*Notice how Step #4 differs for LOAD and STORE

Copyright 2010 John Wiley & Sons, Inc. 7-20

ADD Fetch/Execute Cycle

1. PC → MAR Transfer the address from the

PC to the MAR

2. MDR → IR Transfer the instruction to the

IR

3. IR[address] → MAR Address portion of the

instruction loaded in MAR

4. A + MDR → A Contents of MDR added to

contents of accumulator

5. PC + 1 → PC Program Counter incremented

Copyright 2010 John Wiley & Sons, Inc. 7-21

LMC Fetch/Execute

SUBTRACT

PC → MAR

MDR → IR

IR[addr] → MAR

A – MDR → A

PC + 1 → PC

IN

PC → MAR

MDR → IR

IOR → A

PC + 1 → PC

OUT

PC → MAR

MDR → IR

A → IOR

PC + 1 → PC

HALT

PC → MAR

MDR → IR

BRANCH

PC → MAR

MDR → IR

IR[addr] → PC

BRANCH on Condition

PC → MAR

MDR → IR

If condition false: PC + 1 → PC

If condition true: IR[addr] → PC

Copyright 2010 John Wiley & Sons, Inc. 7-22

Bus

▪The physical connection that makes it possible
to transfer data from one location in the
computer system to another

▪Group of electrical or optical conductors for
carrying signals from one location to another
▪ Wires or conductors printed on a circuit board

▪ Line: each conductor in the bus

▪ 4 kinds of signals
1. Data

2. Addressing

3. Control signals

4. Power (sometimes)

Copyright 2010 John Wiley & Sons, Inc. 7-23

Bus Characteristics

▪ Number of separate conductors

▪ Data width in bits carried simultaneously

▪ Addressing capacity

▪ Lines on the bus are for a single type of signal or

shared

▪ Throughput - data transfer rate in bits per second

▪ Distance between two endpoints

▪ Number and type of attachments supported

▪ Type of control required

▪ Defined purpose

▪ Features and capabilities
Copyright 2010 John Wiley & Sons, Inc. 7-24

Bus Categorizations

▪ Parallel vs. serial buses

▪ Direction of transmission

▪ Simplex – unidirectional

▪ Half duplex – bidirectional, one direction at a time

▪ Full duplex – bidirectional simultaneously

▪ Method of interconnection

▪ Point-to-point – single source to single destination

 Cables – point-to-point buses that connect to an external device

▪ Multipoint bus – also broadcast bus or multidrop bus

 Connect multiple points to one another

Copyright 2010 John Wiley & Sons, Inc. 7-25

Parallel vs. Serial Buses

▪ Parallel

▪ High throughput because all bits of a word are transmitted

simultaneously

▪ Expensive and require a lot of space

▪ Subject to radio-generated electrical interference which limits

their speed and length

▪ Generally used for short distances such as CPU buses and

on computer motherboards

▪ Serial

▪ 1 bit transmitted at a timed

▪ Single data line pair and a few control lines

▪ For many applications, throughput is higher than for parallel

because of the lack of electrical interference

Copyright 2010 John Wiley & Sons, Inc. 7-26

Point-to-point vs. Multipoint

Broadcast
bus
Example:
Ethernet

Plug-in
device

Shared among
multiple devices

Copyright 2010 John Wiley & Sons, Inc. 7-27

Classification of Instructions

▪ Data Movement (load, store)
▪ Most common, greatest flexibility

▪ Involve memory and registers

▪ What’s this size of a word ? 16? 32? 64 bits?

▪ Arithmetic
▪ Operators + - / * ^

▪ Integers and floating point

▪ Boolean Logic
▪ Often includes at least AND, XOR, and NOT

▪ Single operand manipulation instructions
▪ Negating, decrementing, incrementing, set to 0

Copyright 2010 John Wiley & Sons, Inc. 7-28

More Instruction Classifications

▪ Bit manipulation instructions

▪ Flags to test for conditions

▪ Shift and rotate

▪ Program control

▪ Stack instructions

▪ Multiple data instructions

▪ I/O and machine control

Copyright 2010 John Wiley & Sons, Inc. 7-29

Register Shifts and Rotates

Copyright 2010 John Wiley & Sons, Inc. 7-30

Program Control Instructions

▪ Program control

▪ Jump and branch

▪ Subroutine call

and return

Copyright 2010 John Wiley & Sons, Inc. 7-31

Stack Instructions

▪ Stack instructions
▪ LIFO method for organizing information

▪ Items removed in the reverse order from that in which they
are added

Push Pop

Copyright 2010 John Wiley & Sons, Inc. 7-32

Fixed Location Subroutine
Return Address Storage: Oops!

Copyright 2010 John Wiley & Sons, Inc. 7-33

Stack Subroutine Return Address Storage

Copyright 2010 John Wiley & Sons, Inc. 7-34

Block of Memory as a Stack

Copyright 2010 John Wiley & Sons, Inc. 7-35

Multiple Data Instructions

▪ Perform a single operation on multiple pieces of data

simultaneously

▪ SIMD: Single Instruction, Multiple Data

▪ Commonly used in multimedia, vector and array processing

applications

Copyright 2010 John Wiley & Sons, Inc. 7-36

Instruction Elements

▪ OPCODE: task

▪ Source OPERAND(s)

▪ Result OPERAND

▪ Location of data (register, memory)

 Explicit: included in instruction

 Implicit: default assumed

OPCODE
Source

OPERAND
Result

OPERAND

Addresses

Copyright 2010 John Wiley & Sons, Inc. 7-37

Instruction Format

▪ Machine-specific template that specifies

▪ Length of the op code

▪ Number of operands

▪ Length of operands

Simple

32-bit

Instruction

Format

Copyright 2010 John Wiley & Sons, Inc. 7-38

Instructions

▪ Instruction
▪ Direction given to a computer

▪ Causes electrical or optical signals to be sent through
specific circuits for processing

▪ Instruction set
▪ Design defines functions performed by the processor

▪ Differentiates computer architecture by the

 Number of instructions

 Complexity of operations performed by individual instructions

 Data types supported

 Format (layout, fixed vs. variable length)

 Use of registers

 Addressing (size, modes)

Copyright 2010 John Wiley & Sons, Inc. 7-39

Instruction Word Size

▪ Fixed vs. variable size

▪ Pipelining has mostly eliminated variable

instruction size architectures

▪ Most current architectures use 32-bit or 64-bit

words

▪ Addressing Modes

▪ Direct

 Mode used by the LMC

▪ Register Deferred

▪ Also immediate, indirect, indexed

Copyright 2010 John Wiley & Sons, Inc. 7-40

Instruction Format Examples

Copyright 2010 John Wiley & Sons, Inc. 7-41

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

Copyright 2010 John Wiley & Sons, Inc. 7-42

CHAPTER 8: CPU and Memory
Design, Enhancement, and Implementation

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley College

Copyright 2010 John Wiley & Sons, Inc.

Current CPU Architectures

▪ Current CPU Architecture Designs

▪ Traditional modern architectures

▪ VLIW (Transmeta) – Very Long Instruction Word

▪ EPIC (Intel) – Explicitly Parallel Instruction

Computer

▪ Current CPU Architectures

▪ IBM Mainframe series

▪ Intel x86 family

▪ IBM POWER/PowerPC family

▪ Sun SPARC family

8-2

Copyright 2010 John Wiley & Sons, Inc.

Traditional Modern Architectures

Problems with early CPU Architectures and solutions:

▪ Large number of specialized instructions were rarely
used but added hardware complexity and slowed
down other instructions

▪ Slow data memory accesses could be reduced by
increasing the number of general purpose registers

▪ Using general registers to hold addresses could
reduce the number of addressing modes and simplify
architecture design

▪ Fixed-length, fixed format instruction words would
allow instructions to be fetched and decoded
independently and in parallel

8-3

Copyright 2010 John Wiley & Sons, Inc.

VLIW Architecture

▪ Transmeta Crusoe CPU

▪ 128-bit instruction bundle = molecule
▪ Four 32-bit atoms (atom = instruction)

▪ Parallel processing of 4 instructions

▪ 64 general purpose registers

▪ Code morphing layer
▪ Translates instructions written for other CPUs into

molecules

▪ Instructions are not written directly for the Crusoe
CPU

8-4

Copyright 2010 John Wiley & Sons, Inc.

EPIC Architecture

▪ 128-bit instruction bundle

▪ 3 41-bit instructions

▪ 5 bits to identify type of instructions in bundle

▪ 128 64-bit general purpose registers

▪ 128 82-bit floating point registers

▪ Intel X86 instruction set included

▪ Programmers and compilers follow guidelines

to ensure parallel execution of instructions

8-5

Copyright 2010 John Wiley & Sons, Inc.

Fetch-Execute Cycle Timing Issues

▪ Computer clock is used for timing purposes for each

step of the instruction cycle

▪ GHz (gighertz) – billion steps per second

▪ Instructions can (and often) take more than one step

▪ Data word width can require multiple steps

8-6

Fetch-execute

timing diagram

Copyright 2010 John Wiley & Sons, Inc.

CPU Features and Enhancements

▪ Separate Fetch/Execute Units

▪ Pipelining

▪ Multiple, Parallel Execution Units

▪ Scalar Processing

▪ Superscalar Processing

▪ Branch Instruction Processing

8-7

Copyright 2010 John Wiley & Sons, Inc.

Separate Fetch-Execute Units

▪ Fetch Unit
▪ Instruction fetch unit

▪ Instruction decode unit
 Determine opcode

 Identify type of instruction and operands

▪ Several instructions are fetched in parallel and
held in a buffer until decoded and executed

▪ IP – Instruction Pointer register holds instruction
location of current being processed

▪ Execute Unit
▪ Receives instructions from the decode unit

▪ Appropriate execution unit services the instruction

8-8

Copyright 2010 John Wiley & Sons, Inc.

Alternative CPU Organization

8-9

Copyright 2010 John Wiley & Sons, Inc.

Instruction Pipelining

▪ Assembly-line technique to allow overlapping
between fetch-execute cycles of sequences
of instructions

▪ Scalar processing
▪ Average instruction execution is approximately

equal to the clock speed of the CPU

▪ Problems from stalling
▪ Instructions have different numbers of steps

▪ Problems from branching

8-10

Copyright 2010 John Wiley & Sons, Inc.

Pipelining Example

8-11

Copyright 2010 John Wiley & Sons, Inc.

Branch Problem Solutions

▪ Separate pipelines for both possibilities

▪ Probabilistic approach

▪ Requiring the following instruction to not

be dependent on the branch

▪ Instruction Reordering (superscalar

processing)

8-12

Multiple, Parallel Execution Units

▪ Different instructions have different

numbers of steps in their cycle

▪ Differences in each step

▪ Each execution unit is optimized for one

general type of instruction

▪ Multiple execution units permit

simultaneous execution of several

instructions

Copyright 2010 John Wiley & Sons, Inc. 8-13

Copyright 2010 John Wiley & Sons, Inc.

Superscalar Processing

▪ Process more than one instruction per

clock cycle

▪ Separate fetch and execute cycles as

much as possible

▪ Buffers for fetch and decode phases

▪ Parallel execution units

8-14

Copyright 2010 John Wiley & Sons, Inc.

Superscalar CPU Block Diagram

8-15

Copyright 2010 John Wiley & Sons, Inc.

Scalar vs. Superscalar Processing

8-16

Copyright 2010 John Wiley & Sons, Inc.

Superscalar Issues

▪ Out-of-order processing – dependencies
(hazards)

▪ Data dependencies

▪ Branch (flow) dependencies and speculative
execution

▪ Parallel speculative execution or branch
prediction

▪ Branch History Table

▪ Register access conflicts
▪ Rename or logical registers

8-17

Copyright 2010 John Wiley & Sons, Inc.

Memory Enhancements

▪ Memory is slow compared to CPU processing
speeds!
▪ 2Ghz CPU = 1 cycle in ½ of a billionth of a second

▪ 70ns DRAM = 1 access in 70 millionth of a second

▪ Methods to improvement memory accesses
▪ Wide Path Memory Access

 Retrieve multiple bytes instead of 1 byte at a time

▪ Memory Interleaving
 Partition memory into subsections, each with its own

address register and data register

▪ Cache Memory

8-18

Copyright 2010 John Wiley & Sons, Inc.

Memory Interleaving

8-19

Copyright 2010 John Wiley & Sons, Inc.

Cache Memory

▪ Blocks: 8 or 16 bytes

▪ Tags: pointer to location in main memory

▪ Cache controller
▪ hardware that checks tags

▪ Cache Line
▪ Unit of transfer between storage and cache memory

▪ Hit Ratio: ratio of hits out of total requests

▪ Synchronizing cache and memory
▪ Write through

▪ Write back

8-20

Copyright 2010 John Wiley & Sons, Inc.

Step-by-Step Use of Cache

8-21

Copyright 2010 John Wiley & Sons, Inc.

Step-by-Step Use of Cache

8-22

Copyright 2010 John Wiley & Sons, Inc.

Performance Advantages

▪Hit ratios of 90% common

▪ 50%+ improved execution speed

▪ Locality of reference is why caching works

▪ Most memory references confined to small region of

memory at any given time

▪ Well-written program in small loop, procedure or

function

▪ Data likely in array

▪ Variables stored together

8-23

Copyright 2010 John Wiley & Sons, Inc.

Two-level Caches

▪ Why do the sizes of the caches have to be

different?

8-24

Modern CPU Block Diagram

Copyright 2010 John Wiley & Sons, Inc. 8-25

Copyright 2010 John Wiley & Sons, Inc.

Multiprocessing

▪ Reasons

▪ Increase the processing power of a system

▪ Parallel processing

▪ Multiprocessor system

▪ Tightly coupled

▪ Multicore processors - when CPUs are on

a single integrated circuit

8-26

Copyright 2010 John Wiley & Sons, Inc.

Multiprocessor Systems

▪ Identical access to programs, data,

shared memory, I/O, etc.

▪ Easily extends multi-tasking, and

redundant program execution

▪ Two ways to configure

▪ Master-slave multiprocessing

▪ Symmetrical multiprocessing (SMP)

8-27

Copyright 2010 John Wiley & Sons, Inc.

Typical Multiprocessing System

Configuration

8-28

Copyright 2010 John Wiley & Sons, Inc.

Master-Slave Multiprocessing

▪ Master CPU
▪ Manages the system

▪ Controls all resources and scheduling

▪ Assigns tasks to slave CPUs

▪ Advantages
▪ Simplicity

▪ Protection of system and data

▪ Disadvantages
▪ Master CPU becomes a bottleneck

▪ Reliability issues – if master CPU fails entire
system fails

8-29

Copyright 2010 John Wiley & Sons, Inc.

Symmetrical Multiprocessing

▪ Each CPU has equal access to resources

▪ Each CPU determines what to run using a
standard algorithm

▪ Disadvantages
▪ Resource conflicts – memory, i/o, etc.

▪ Complex implementation

▪ Advantages
▪ High reliability

▪ Fault tolerant support is straightforward

▪ Balanced workload

8-30

Copyright 2010 John Wiley & Sons, Inc.

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

8-31

CHAPTER 9: Input / Output

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley College

Copyright 2010 John Wiley & Sons, Inc. 9-2

Basic Model

▪ Processing speed or program execution

▪ determined primarily by ability of I/O

operations to stay ahead of processor.

Input Process Output

I/O Requirements

▪ Means for addressing different peripheral devices

▪ A way for peripheral devices to initiate

communication with the CPU

▪ An efficient means of transferring data directly

between I/O and memory for large data transfers

since programmed I/O is suitable only for slow

devices and individual word transfers

▪ Buses that interconnect high-speed I/O devices with

the computer must support high data transfer rates

▪ Means for handling devices with extremely different

control requirements

Copyright 2010 John Wiley & Sons, Inc. 9-3

I/O Interfaces

▪ Are necessary because of

▪ Different formats required by the devices

▪ Incompatibilities in speed between the

devices and the CPU make

synchronization difficult

▪ Bursts of data vs. streaming data

▪ Device control requirements that would tie

up too much CPU time

Copyright 2010 John Wiley & Sons, Inc. 9-4

Copyright 2010 John Wiley & Sons, Inc. 9-5

Examples of I/O Devices

Copyright 2010 John Wiley & Sons, Inc. 9-6

Simple I/O Configuration

Copyright 2010 John Wiley & Sons, Inc. 9-7

More Complex I/O Module

Copyright 2010 John Wiley & Sons, Inc. 9-8

Advanced I/O Techniques

▪ Programmed I/O

▪ CPU controlled I/O

▪ Interrupt Driven I/O

▪ External input controls

▪ Direct Memory Access Controllers

▪ Method for transferring data between main

memory and a device that bypasses the

CPU

Copyright 2010 John Wiley & Sons, Inc. 9-9

Programmed I/O

▪ I/O data and address registers in CPU

▪ One word transfer per I/O instruction

▪ Address information for each I/O device

▪ LMC I/O capability for 100 devices

▪ Full instruction fetch/execute cycle

▪ Primary use:

▪ keyboards

▪ communication with I/O modules (see DMA)

Copyright 2010 John Wiley & Sons, Inc. 9-10

Programmed I/O Example

Copyright 2010 John Wiley & Sons, Inc. 9-11

Programmed I/O Example

Copyright 2010 John Wiley & Sons, Inc. 9-12

Interrupts

▪ Signal that causes the CPU to alter its
normal flow of instruction execution

▪ frees CPU from waiting for events

▪ provides control for external I/O initiation

▪ Examples

▪ unexpected input

▪ abnormal situation

▪ illegal instructions

▪ multitasking, multiprocessing

Copyright 2010 John Wiley & Sons, Inc. 9-13

Interrupt Terminology

▪ Interrupt lines (hardware)
▪ One or more special control lines to the CPU

▪ Interrupt request

▪ Interrupt handlers
▪ Program that services the interrupt

▪ Also known as an interrupt routine or device driver

▪ Context
▪ Saved registers of a program before control is

transferred to the interrupt handler

▪ Allows program to resume exactly where it left off
when control returns to interrupted program

Copyright 2010 John Wiley & Sons, Inc. 9-14

Use of Interrupts

▪ Notify that an external event has occurred

▪ real-time or time-sensitive

▪ Signal completion

▪ printer ready or buffer full

▪ Allocate CPU time

▪ time sharing

▪ Indicate abnormal event (CPU originates for

notification and recovery)

▪ illegal operation, hardware error

▪ Software interrupts

Copyright 2010 John Wiley & Sons, Inc. 9-15

The CPU - The Interrupt Cycle

▪ Fetch / Execute cycle

▪ Interrupt cycle

HALT

START

Fetch Next

Instruction

Execute

Instruction

Check for

Interrupt

Interrupts Disabled

Process

Interrupt

Copyright 2010 John Wiley & Sons, Inc. 9-16

Servicing the Interrupt

1. Lower priority interrupts are held until

higher priority interrupts are complete

2. Suspend program in progress

3. Save context, including last instruction

executed and data values in registers,

in the PCB or the stack area in

memory

4. Branch to interrupt handler program

Copyright 2010 John Wiley & Sons, Inc. 9-17

Servicing an Interrupt

Copyright 2010 John Wiley & Sons, Inc. 9-18

Interrupt Processing Methods

▪ Vectored interrupt

▪ Address of interrupting device is included

in the interrupt

▪ Requires additional hardware to implement

▪ Polling

▪ Identifies interrupting device by polling

each device

▪ General interrupt is shared by all devices

Copyright 2010 John Wiley & Sons, Inc. 9-19

Vectored Interrupts

Copyright 2010 John Wiley & Sons, Inc. 9-20

Polled Interrupts

Print Handler Interrupt

Copyright 2010 John Wiley & Sons, Inc. 9-21

Using an Interrupt for Time Sharing

Copyright 2010 John Wiley & Sons, Inc. 9-22

Copyright 2010 John Wiley & Sons, Inc. 9-23

Multiple Interrupts Example

Copyright 2010 John Wiley & Sons, Inc. 9-24

Direct Memory Access

▪ Transferring large blocks of data

▪ Direct transfer to and from memory

▪ CPU not actively involved in transfer itself

▪ Required conditions for DMA

▪ The I/O interface and memory must be connected

▪ The I/O module must be capable of reading and

writing to memory

▪ Conflicts between the CPU and the I/O module

must be avoided

▪ Interrupt required for completion

Copyright 2010 John Wiley & Sons, Inc. 9-25

DMA Instructions

▪ Application program requests I/O service
from operating system

▪ privileged programmed I/O instructions

▪ To initiate DMA, programmed I/O is used to
send the following information:

1. location of data on I/O device

2. the starting location in memory

3. the size of the block

4. read/write

▪ Interrupt to CPU upon completion of DMA

Copyright 2010 John Wiley & Sons, Inc. 9-26

DMA Initiation and Control

I/O Module Interfaces

Copyright 2010 John Wiley & Sons, Inc. 9-27

Copyright 2010 John Wiley & Sons, Inc. 9-28

I/O Module Functions
▪ Recognizes messages from device(s) addressed to it

and accepts commands from the CPU

▪ Provides a buffer where the data from memory can be

held until it can be transferred to the device

▪ Provides the necessary registers and controls to

perform a direct memory transfer

▪ Physically controls the device

▪ Copies data from its buffer to the device/from the

CPU to its buffer

▪ Communicates with CPU

Copyright 2010 John Wiley & Sons, Inc. 9-29

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

CHAPTER 10:

Computer Peripherals

The Architecture of Computer Hardware,

Systems Software & Networking:
An Information Technology Approach

4th Edition, Irv Englander

John Wiley and Sons ©2010

PowerPoint slides authored by Wilson Wong, Bentley University

PowerPoint slides for the 3rd edition were co-authored with Lynne Senne,

Bentley College

Copyright 2010 John Wiley & Sons, Inc.

Peripherals

▪ Devices that are separate from the
basic computer

▪ Not the CPU, memory, or power supply

▪ Classified as input, output, and storage

▪ Connect via

▪ Ports

▪ Interface to systems bus

10-2

Copyright 2010 John Wiley & Sons, Inc.

Storage Devices

▪ Primary memory

▪ Secondary storage

▪ Data and programs must be copied to
primary memory for CPU access

▪ Permanence of data - nonvolatile

▪ Direct access storage devices (DASDs)

▪ Online storage

▪ Offline storage – loaded when needed

▪ Network file storage
 File servers, web servers, database servers

10-3

Copyright 2010 John Wiley & Sons, Inc.

Speed

▪ Measured by access time and data

transfer rate

▪ Access time: average time it takes a

computer to locate data and read it

▪ millisecond = one-thousandth of a second

▪ Data transfer rate: amount of data that

moves per second

10-4

Copyright 2010 John Wiley & Sons, Inc.

Storage Hierarchy

10-5

Copyright 2010 John Wiley & Sons, Inc.

Secondary Storage Devices

▪ Solid state memory

▪ Magnetic disks

▪ Optical disk storage

▪ Magnetic tape

▪ Network storage

▪ Characteristics

▪ Rotation vs. Linear

▪ Direct access vs. Sequential access

10-6

Flash Memory

▪ Nonvolatile electronic integrated circuit memory

▪ Similar to other read-only memory but uses a

different technology

▪ Permits reading and writing individual bytes or small

blocks of data

▪ Small size makes it useful in portable devices such

as USB “thumb drives”, digital cameras, cell phones,

music players

▪ Relatively immune to physical shocks

▪ Generates little heat or noise

Copyright 2010 John Wiley & Sons, Inc. 10-7

Disk Layouts – CAV vs. CLV

▪ CAV – Constant Angular Velocity

▪ Number of bits on each track is the same! Denser

towards the center.

▪ Spins the same speed for every track

▪ CLV – Constant Linear Velocity

▪ All tracks have the same physical length and

number of bits

▪ Constant speed reading data off a track

▪ Drive has to speed up when accessing close to

the center of the drive and slow down when

accessing towards the edge of the drive

Copyright 2010 John Wiley & Sons, Inc. 10-8

Disk Layout – Multiple Zone

▪ Multiple zone recording

▪ Also known as zone bit recording (ZBR) or zone-

CAV recording (Z-CAV)

▪ Compromise between CAV and CLV

▪ Disk divided into zones

▪ Cylinders in different zones have a different

number of sectors

▪ Number of sectors in a particular zone is constant

▪ Data is buffered so the data rate to the I/O

interface is constant

Copyright 2010 John Wiley & Sons, Inc. 10-9

Multiple-Zone Disk

Configuration

Copyright 2010 John Wiley & Sons, Inc. 10-10

Copyright 2010 John Wiley & Sons, Inc.

Magnetic Disks

▪ Track – circle

▪ Cylinder – same track on all platters

▪ Block – small arc of a track

▪ Sector – pie-shaped part of a platter

▪ Head – reads data off the disk as disk rotates at high
speed (4200-14000 RPM)

▪ Head crash
▪ Disk damaged if head touches disk surface

▪ Parked heads

10-11

Copyright 2010 John Wiley & Sons, Inc.

A Hard Disk Layout

10-12

Copyright 2010 John Wiley & Sons, Inc.

Locating a Block of Data

▪ Average seek time: time
required to move from one track
to another

▪ Latency: time required for disk to
rotate to beginning of correct
sector

▪ Transfer time: time required to
transfer a block of data to the
disk controller buffer

10-13

Copyright 2010 John Wiley & Sons, Inc.

Disk Access Times

▪ Average Seek time

▪ average time to move from one track to another

▪ Average Latency time

▪ average time to rotate to the beginning of the

sector

▪ Average Latency time = ½ * 1/rotational speed

▪ Transfer time
▪ 1/(# of sectors * rotational speed)

▪ Total Time to access a disk block
▪ Avg. seek time + avg. latency time + avg. transfer time

10-14

Copyright 2010 John Wiley & Sons, Inc.

Magnetic Disks

▪ Data Block Format

▪ Interblock gap

▪ Header

▪ Data

▪ Formatting disk

▪ Establishes the track positions, blocks and
headers needed before use of the disk

10-15

Copyright 2010 John Wiley & Sons, Inc.

Disk Block Formats

Single Data Block

Header for Windows disk

10-16

Disk Arrays

▪ Grouping of multiple disks together

▪ RAID – Redundant Array of Inexpensive

Disks

▪ Mirrored array

▪ Striped array

▪ RAID 0 to RAID 5

Copyright 2010 John Wiley & Sons, Inc. 10-17

RAID – Mirrored

▪ Pair of disks contain the exact same stores of data

▪ Reading data – alternate blocks of data are read from

hard drives and combined

▪ Access time is reduced by approximately a factor

equal to the number of disk drives in array

▪ Read failure – block is marked and then read from

the mirrored drive

▪ When using three or more mirrored drives, majority

logic is used in the event of a failure. Fault-tolerant

computers use this technique.

Copyright 2010 John Wiley & Sons, Inc. 10-18

RAID - Striped

▪ A file segment is stored divided into blocks on

different disks

▪ Minimum of three drives needed because one

disk drive is reserved for error checking

▪ Writes – block of parity words from each

block of data is created and put on the

reserved error checking disk

▪ Reads – parity data is used to check original

data

Copyright 2010 John Wiley & Sons, Inc. 10-19

RAID Levels

▪ RAID 0 – not true RAID, no error checking or

redundancy, but data is placed across all

drives for increased speed

▪ RAID 1 – mirrored array

▪ RAID 2, 3, 4 – arrays that are striped in

different ways

▪ RAID 5 – error checking blocks are spread

across all drives

Copyright 2010 John Wiley & Sons, Inc. 10-20

Copyright 2010 John Wiley & Sons, Inc.

Optical Storage

▪ Reflected light off a mirrored or pitted surface

▪ CD-ROM
▪ 650 MB of data, approximately 550 MB after

formatting and error checking

▪ Spiral 3 miles long, containing 15 billion bits!

▪ CLV – all blocks are same physical length

▪ Block – 2352 bytes
 2k of data (2048 bytes)

 16 bytes for header (12 start, 4 id)

 288 bytes for advanced error control

▪ DVD – similar technology to CD-ROM

▪ WORM – write-once read-many
10-21

Copyright 2010 John Wiley & Sons, Inc.

Optical Storage

▪ Laser strikes land: light reflected into detector

▪ Laser strikes a pit: light scattered

10-22

Copyright 2010 John Wiley & Sons, Inc.

Layout: CD-ROM vs. Standard Disk

CD-ROM Hard Disk

10-23

Copyright 2010 John Wiley & Sons, Inc.

Types of Optical Storage

▪ WORM Disks

▪ Write-once-read-many times

▪ Medium can be altered by using a medium-powered laser to

blister the surface

▪ Medium-powered laser blister technology also used

for

▪ CD-R, DVD-R, DVD-R, DVD+R

▪ CD-RW, DVD-RW, DVD+RW, DVD-RAM, DVD+RAMBD-RE

▪ File compatibility issues between the different CD,

DVD and WORM formats

10-24

Copyright 2010 John Wiley & Sons, Inc.

Magnetic Tape

▪ Offline storage

▪ Archival purposes

▪ Disaster recovery

▪ Tape Cartridges
▪ Linear tape open format vs. helical scan tape format

10-25

Copyright 2010 John Wiley & Sons, Inc.

Displays

▪ Pixel – picture element

▪ Screen Size: diagonal length of screen

▪ Aspect ratio – X pixels to Y pixels

▪ 4:3 – older displays

▪ 16:9 – widescreen displays

▪ Pixel color is determined by intensity of
3 colors – Red, Green and Blue (RGB)

▪ True Color – 8 bits for each color

▪ 256 levels of intensity for each color

▪ 256 * 256 * 256 = 16.7 million colors

10-26

Copyright 2010 John Wiley & Sons, Inc.

Resolution and Picture Size

▪ Resolution
▪ Measured as either number of pixels per inch or size of an

individual pixel

▪ Screen resolution examples:
 768 x 1024

 1440 x 900

 1920 x 1080

▪ Picture size calculation
▪ Resolution * bits required to represent number of colors in

picture

▪ Example: resolution is 100 pixels by 50 pixels, 4 bits required
for a 16 color image

100 * 50 * 4 bits = 20,000 bits

▪ Video memory requirements are significant!

10-27

Copyright 2010 John Wiley & Sons, Inc.

Interlaced vs. Progressive Scan

10-28

Copyright 2010 John Wiley & Sons, Inc.

Diagram of Raster Screen

Generation Process

10-29

Color Transformation Table

Copyright 2010 John Wiley & Sons, Inc. 10-30

Copyright 2010 John Wiley & Sons, Inc.

Display Example

10-31

Copyright 2010 John Wiley & Sons, Inc.

LCD – Liquid Crystal Display

▪ Fluorescent light or LED panel

▪ 3 color cells per pixel

▪ Operation

▪ 1st filter polarizes light in a specific direction

▪ Electric charge rotates molecules in liquid crystal

cells proportional to the strength of colors

▪ Color filters only let through red, green, and blue

light

▪ Final filter lets through the brightness of light

proportional to the polarization twist

10-32

Copyright 2010 John Wiley & Sons, Inc.

Liquid Crystal Display

10-33

Copyright 2010 John Wiley & Sons, Inc.

LCDs (continued)

▪ Active matrix

▪ One transistor per cell

▪ More expensive

▪ Brighter picture

▪ Passive matrix

▪ One transistor per row or column

▪ Each cell is lit in succession

▪ Display is dimmer since pixels are lit less
frequently

10-34

Copyright 2010 John Wiley & Sons, Inc.

CRT Display Technology

▪ CRTs (similar to TVs)

▪ 3 stripes of phosphors for each color

▪ 3 separate electron guns for each color

▪ Strength of beam → brightness of color

▪ Raster scan

 30x per second

 Interlaced vs. non-interlaced (progressive scan)

10-35

OLED Display Technology

▪ No backlight

▪ Consists of red, green and blue LEDs

▪ Each LED lights up individually

▪ Very thin displays with panels less than

3mm thick!

Copyright 2010 John Wiley & Sons, Inc. 10-36

Copyright 2010 John Wiley & Sons, Inc.

Printers

▪ Dots vs. pixels
▪ 300-2400 dpi vs. 70-100 pixels per inch

▪ Dots are on or off, pixels have intensities

▪ Types
▪ Typewriter / Daisy wheels – obsolete

▪ Impact printing - dot matrix – mostly obsolete

▪ Inkjet – squirts heated droplets of ink

▪ Laser printer

▪ Thermal wax transfer

▪ Dye Sublimation

10-37

Copyright 2010 John Wiley & Sons, Inc. 10-38

Copyright 2010 John Wiley & Sons, Inc.

Creating a Gray Scale

10-39

Copyright 2010 John Wiley & Sons, Inc.

Laser Printer Operation

1. Dots of laser light are beamed onto a drum

2. Drum becomes electrically charged

3. Drum passes through toner which then sticks to
the electrically charged places

4. Electrically charged paper is fed toward the
drum

5. Toner is transferred from the drum to the paper

6. The fusing system heats and melts the toner
onto the paper

7. A corona wire resets the electrical charge on
the drum

10-40

Copyright 2010 John Wiley & Sons, Inc.

Laser Printer Operation

10-41

Copyright 2010 John Wiley & Sons, Inc.

Laser Printer Operation

10-42

Copyright 2010 John Wiley & Sons, Inc.

Other Computer Peripherals

▪ Scanners

▪ Flatbed, sheet-fed, hand-held

▪ Light is reflected off the sheet of paper

▪ User Input Devices

▪ Keyboard, mouse, light pens, graphics
tablets

▪ Communication Devices

▪ Telephone modems

▪ Network devices

10-43

Network Communication Devices

▪ Network is just another I/O device

▪ Network I/O controller is the network

interface card (NIC)

▪ Types of network connections

▪ Ethernet, FDDI fiber, token-ring

▪ Medium access control (MAC) protocols

▪ Define the specific rules of communication

for the network

Copyright 2010 John Wiley & Sons, Inc. 10-44

Copyright 2010 John Wiley & Sons, Inc.

Copyright 2010 John Wiley & Sons

All rights reserved. Reproduction or translation of this
work beyond that permitted in section 117 of the 1976
United States Copyright Act without express permission
of the copyright owner is unlawful. Request for further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc. The purchaser
may make back-up copies for his/her own use only and
not for distribution or resale. The Publisher assumes no
responsibility for errors, omissions, or damages caused
by the use of these programs or from the use of the
information contained herein.”

10-45

