General Chemistry

CHM1101

Matter

 MeasurementsChapter
1

COURSE NAME: CHEMISTRY 101 COURSE CODE:

What is Chemistry?

The study of matter and the changes it undergoes

NaCl	
Salt water	
Iron	
sugar	
air	
helium	
water	
salad	

compound
element
homogeneous mixture
heterogeneous

NaCl	compound
Salt water	homogeneous mixture
Iron	element
sugar	compound
air	homogeneous mixture
helium	element
water	compound
salad	heterogeneous mixture

compound
element
homogeneous mixture
heterogeneous

Matter States

The difference between the states is the distance between the molecules.

Mass
 volume

Does not depend on how much matter is being considered

Density
temperature

How can these properties be measured ?

Measurement

SI Units
 International system of units

Measurement

SI Units
 International system of units

Base Quantity	Name of unit	Symbol
Length	meter	m
Mass	Kilogram	Kg
Time	Second	s
Electrical current	Ampere	A
Temperature	Kelvin	K
Amount of substance	Mole	mol
Luminous intensity	candela	cd

Prefixes Used with SI Units

Prefix	Symbol	Multiple of Base Unit
Giga	G	$1,000,000,000$ or 10^{9}
Mega	M	$1,000,000$ or 10^{6}
kilo	k	1,000 or 10^{3}
deci	d	0.1 or 10^{-1}
centi	c	0.01 or 10^{-2}
milli	m	0.001 or 10^{-3}
micro	m	0.000001 or 10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
Femto	f	10^{-15}

Mass and weight

What is the difference between mass and weight?
Mass: is a measure of amount of matter in an object

$$
1 \mathrm{Kg}=1000 \mathrm{~g}=1 \times 10^{3} \mathrm{~g}
$$

Weight: is the force that gravity exerts on an object

Newton (N)

Volume

Volume - SI derived unit for volume is cubic meter $\left(\mathrm{m}^{3}\right)$

$$
1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3}
$$

$$
1 \mathrm{~cm}^{3}=1 \mathrm{~mL}
$$

$1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}$

Volume: $1000 \mathrm{~cm}^{3}$;
1000 mL ;
$1 \mathrm{dm}^{3}$

Volume: $1 \mathrm{~cm}^{3}$;

Dimensional Analysis Method of Solving Problems

How many mL are in 1.63 L?

Conversion Unit 1 L = 1000 mL

$$
1.63 / \mathrm{Kx} \quad \frac{1000 \mathrm{~mL}}{1 /}=1630 \mathrm{~mL}
$$

Density

Density is defined as the mass per unit volume.
density $=$ mass/volume $\quad d=\frac{m}{V} \quad$ S.I. units for density $=\mathbf{k g} / \mathbf{m}^{3}$

$\mathbf{g} / \mathbf{c m}^{3}$ for solids $\mathbf{g} / \mathbf{m l}$ for liquids
 g / L for gases

Density

A piece of platinum metal with a density of $21.5 \mathrm{~g} / \mathrm{cm}^{3}$ has a volume of $4.49 \mathrm{~cm}^{3}$. What is its mass?

$$
\begin{aligned}
& d=\frac{m}{V} \\
& m=d \times V \\
& m=21.5 \mathrm{~g} / \text { chr }^{3} \times 4.49 \operatorname{cnh}^{3}=96.5 \mathrm{~g}
\end{aligned}
$$

Temperature

Temperature scales

Fahrenheit

Celsius

Kelvin
${ }^{0} F=\left(\frac{9}{5} \quad x^{0} C\right)+32$
$32{ }^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}$
$212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
$273 \mathrm{~K}=0^{\circ} \mathrm{C}$
$373 \mathrm{~K}=100^{\circ} \mathrm{C}$
$\mathrm{T}($ in Kelvin $)=\mathrm{T}($ in Celsius $)+273.15$

K

Precision and Accuracy

accurate and precise

precise, but not accurate

not accurate not precise

	Student A	Student B
1.964 g	1.972 g	Student C
1.978 g	1.968 g	2.000 g
Average	1.971 g	1.970 g

The true mass of object $=2.000 \mathrm{~g}$

Precision: how close a set of measurements are to each other (reproducibility).
Accuracy: how close your measurements are to the true value.

Significant Figures

- Any digit that is not zero is significant
$1.234 \mathrm{~kg} \quad 4$ significant figures
- Zeros between nonzero digits are significant

606 m $\quad 3$ significant figures

- Zeros to the left of the first nonzero digit are not significant
$0.08 \mathrm{~L} \quad 1$ significant figure
- If a number is greater than 1 , then all zeros to the right of the decimal point are significant
2.0 mg
2 significant figures
- If a number is less than 1 , then only the zeros that are at the end and in the middle of the number are significant
$0.00420 \mathrm{~g} \quad 3$ significant figures

How many significant figures are in each of the following measurements?

1) 24 ml
2) 3001 g
3) $0.0320 \mathrm{~m}^{3}$
4) 6.4×10^{4} molecules
5) 560 kg

- 2 significant figures
- 4 significant figures
- 3 significant figures
- 2 significant figures
- 3 significant figures- to clarify use the scientific notation $5.60 \times 10^{2} \mathbf{~ k g}$

Tip: start to count the sig. fig. from the left when you see a non zero number until the end of the number.

Significant Figures: Addition \& Subtraction

If addition or subtraction:
1- must have same power before addition or subtraction
2- sig. fig. in the answer is as the smaller digits after decimal point
Example $\mathbf{Y}=232.234+0.27 \quad$ Find \mathbf{Y}.

Answer

Significant Figures: Multiplication \& Division

When multiplying or dividing numbers, the end result should have the same amount of significant digits as the number with the least amount of significant digits.

```
4.51 x 3.6666 = 16.53636 \approx 16.5
(3 sf) (5 sf) (3 sf)
```


Significant Figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths; 6.64, 6.68 and 6.70?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67 \quad=\text { 又 }
$$

Because 3 is an exact number

Scientific Notation

N is a number
between 1 and 10

The number of atoms in 12 g of carbon:
602,200,000,000,000,000,000,000

$$
6.022 \times 10^{23}
$$

The mass of a single carbon atom in grams:

0.0000000000000000000000199

$$
1.99 \times 10^{-23}
$$

$568.762=5.68762 \times 10^{2}(6 \mathrm{SF})$
$0.00000772=7.72 \times 10^{-6}(3 \mathrm{SF})$

Question 1

Which of the following is an example of a physical property?
A) combustibility
В) corrosiveness
C) explosiveness
D) density
E) A and D

Question 2

Which of the following represents the greatest mass?
A) $2.0 \times 10^{3} \mathrm{mg}$
В) 10.0 dg
C) 0.0010 kg
D) $1.0 \times 10^{6} \mu \mathrm{~g}$
E) $3.0 \times 10^{12} \mathrm{pg}$

Question 3

Convert 240 K and 468 K to the Celsius scale.
A) $513^{\circ} \mathrm{C}$ and $741^{\circ} \mathrm{C}$
B) $-59^{\circ} \mathrm{C}$ and $351^{\circ} \mathrm{C}$
C) $-18.3^{\circ} \mathrm{C}$ and $108^{\circ} \mathrm{C}$
D) $-33^{\circ} \mathrm{C}$ and $195^{\circ} \mathrm{C}$

Question 4

Calculate the volume occupied by $4.50 \times 10^{2} \mathrm{~g}$ of gold (density $=19.3 \mathrm{~g} / \mathrm{cm}^{3}$).
A) $23.3 \mathrm{~cm}^{3}$
B) $8.69 \times 10^{3} \mathrm{~cm}$
C) $19.3 \mathrm{~cm}^{3}$
D) $450 \mathrm{~cm}^{3}$

the correct answer.

Question 6

How many significant figures are there in the measurement 3.4080 g ?
A) 6
B) 5
C) 4
D) 3

Question 7

How many significant figures should you report as the sum of $8.3801+$ 2.57?
A) 3
B) 5
C) 7
D) 6

Question 9

The value of 345 mm is a measure of
A) temperature
B) density
B) C) volume
D) distance \mathbf{E}) Mass

Question 10

The measurement 0.0000043 m , expressed correctly using scientific notation, is
A. $0.43 \times 10^{-5} \mathrm{~m}$
B. 4.3×10^{-6}
C. 4.3×10^{-7}
D. 4.3×10^{-5}

Question 11

A laboratory technician analyzed a sample three times for percent iron and got the following results: $22.43 \% \mathrm{Fe}, 24.98 \% \mathrm{Fe}$, and $21.02 \% \mathrm{Fe}$. The actual percent iron in the sample was 22.81%. The analyst's

> A) precision was poor but the average result was accurate.
B) accuracy was poor but the precision was good.
C) work was only qualitative.
D) work was precise.
E) C and D.

كلية العلوم التطبيقية
Faculty of Applied Sciences

Periodic Table

Chapter

2

COURSE NAME: CHEMISTRY 101 GOURSE CODE:

Dalton's Atomic Theory (1808)

1. Elements are composed of extremely small particles called atoms.
2. All atoms of a given element are identical, having the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other elements.
3. Compounds are composed of atoms of more than one element. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
4. A chemical reaction involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.

Rutherford's Experiment

(1908 Nobel Prize in Chemistry)

α particle velocity $\sim 1.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$ ($\sim 5 \%$ speed of light)

1. atoms positive charge is concentrated in the nucleus
2. proton (p) has opposite (+) charge of electron (-)
3. mass of p is $1840 \times$ mass of $e^{-}\left(1.67 \times 10^{-24} \mathrm{~g}\right)$

TABLE 2.1 Mass and Charge of Subatomic Particles

Charge

Particle	Mass $\mathbf{(g)}$	Coulomb	Charge Unit
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1
Proton	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1
Neutron	1.67493×10^{-24}	0	0

*More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

$$
\text { mass } p \approx \text { mass } n \approx 1840 \times \text { mass } \mathrm{e}^{-}
$$

Atomic number, Mass number and Isotopes

Atomic number $(Z)=$ number of protons in nucleus
Mass number $(A)=$ number of protons + number of neutrons
$=$ atomic number $(Z)+$ number of neutrons
Isotopes are atoms of the same element (X) with different numbers of neutrons in their nuclei

Bohr's Model of the Atom (1913)

1. e^{-}can only have specific (quantized) energy values
2. light is emitted as e^{-}moves from one energy level to a lower energy level

$$
E_{n}=-R_{\mathrm{H}}\left(1 / \mathrm{n}^{2}\right)
$$

$$
n \text { (principal quantum number) }=1,2,3, \ldots
$$

Quantum numbers $\left(n, l, m_{l}, m_{s}\right)$

```
principal quantum number (n)
```

$n=1,2,3,4, \ldots$.

```
distance of e- from the nucleus
```


Angular momentum quantum number (I)

for a given value of $n, I=0,1,2,3, \ldots n-1$

$$
\begin{gathered}
n=1, l=0 \\
n=2, l=0 \text { or } 1 \\
n=3, l=0,1, \text { or } 2
\end{gathered}
$$

$$
\begin{array}{ll}
I=0 & s \text { orbital } \\
I=1 & p \text { orbital } \\
I=2 & d \text { orbital } \\
I=3 & f \text { orbital }
\end{array}
$$

Shape of the "volume" of space that the e^{-}occupies
$1=0$ (s orbitals)

$$
\text { I = } 1 \text { (p orbitals) }
$$

$3 d_{x^{2}-y}$

قسم الكيمياء Department of Chemistry

I $=2$ (d orbitals)
magnetic quantum number $\left(m_{l}\right)$
orientation of the orbital in space

$$
\begin{gathered}
\text { for a given value of } l \\
\quad m_{l}=-l, \ldots, 0, \ldots .+l \\
\text { if } I=1 \text { (p orbital), } m_{l}=-1,0, \text { or } 1 \\
\text { if } I=2 \text { (d orbital), } m_{l}=-2,-1,0,1 \text {, or } 2
\end{gathered}
$$

spin quantum number $\left(m_{s}\right)$
$m_{\mathrm{s}}=+1 / 2$ or $-1 / 2$ Departmento of Chemistry

Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

TABLE 7.2 Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom

\boldsymbol{n}	\boldsymbol{e}	Orbital Designation	$\boldsymbol{m}_{\boldsymbol{\ell}}$	Number of Orbitals
1	0	$1 s$	0	1
2	0	$2 s$	$-1,0,+1$	1
	1	$2 p$	0	3
3	0	$3 s$	$-1,0,1$	1
	1	$3 p$	$-2,-1,0,1,2$	3
4	2	$3 d$	$-1,0,1$	5
	0	$4 s$	$-2,-1,0,1,2$	1
	1	$4 p$	$-3,-2,-1,0,1,2,3$	3
	2	$4 f$		7

Metals, Nonmetals and Metaloids

Lanthanide series

Actinide series

$\begin{aligned} & 57 \\ & \text { La } \end{aligned}$	$\begin{aligned} & 58 \\ & \mathbf{C e} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{aligned} & \mathbf{6 0} \\ & \mathbf{N d} \end{aligned}$	$\begin{aligned} & \mathbf{6 1} \\ & \mathbf{P m} \end{aligned}$	$\begin{aligned} & \hline 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & \hline 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & \hline 68 \\ & \text { Er } \end{aligned}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \end{aligned}$	$\begin{aligned} & \mathbf{7 0} \\ & \mathbf{Y b} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathbf{8 9} \\ & \mathbf{A c} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & \mathbf{9 1} \\ & \mathbf{P a} \end{aligned}$	$\underset{\mathbf{u}}{92}$	$\begin{aligned} & \mathbf{9 3} \\ & \mathbf{N p} \end{aligned}$	$\begin{aligned} & \mathbf{9 4} \\ & \mathbf{P u} \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{9 6} \\ \mathbf{C m} \end{array}$	$\begin{aligned} & 97 \\ & \mathbf{B k} \end{aligned}$	$\begin{aligned} & \mathbf{9 8} \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \end{aligned}$	$\begin{aligned} & 101 \\ & \text { Md } \end{aligned}$	$\begin{array}{\|l} \hline 102 \\ \text { No } \end{array}$

Metals, Nonmetals and Metaloids

metals

Tend to lose one electron or more

1A, 2A, 3A
(except H, B)

nonmetals

Tend to accept one electron or more

On the right
of zigzag line

metalloids

Between metals and nonmetals

Around the zigzag line

Blocks in Periodic Table

s block

p block

(C) www-elementsdatabase.com					
B^{5}	C^{6}	N^{7}	0^{8}	F^{9}	Ne^{10}
Al^{13}	Si ${ }^{14}$	P^{15}	S^{16}	Cl^{17}	Ar^{18}
Ga ${ }^{31}$	$G e^{32}$	As ${ }^{33}$	Se ${ }^{34}$	Br^{35}	Kr^{36}
$\ln ^{49}$	Sn^{50}	Sb^{51}	Te ${ }^{52}$	$1{ }^{53}$	> 54
TI ${ }^{81}$	Pb^{82}	Bi^{83}	P\% ${ }^{84}$	${ }_{\text {At }} 8$	Rn^{86}

f Block

C^{58}	Pr^{59}	Nd^{60}	Pm^{61}	Sm^{62}	Eu^{63}	Gd^{64}	$\mathrm{~Tb}^{65}$	Dy^{66}	Ho^{67}	Er^{68}	Tm^{69}	Yb^{70}	Lu^{71}
Th^{90}	$\mathrm{~Pa}^{91}$	U^{92}	$\mathrm{~Np}^{93}$	Pu^{94}	Am	Cm^{95}	Bk	Cf^{98}	Es^{99}	Fm^{100}	Md^{101}	No^{102}	Lr^{103}

Electron configuration

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.
principal quantum number \boldsymbol{n}

Orbital diagram

H

Order of orbitals (filling) in multi-electron atom

$1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}<4 \mathrm{p}<5 \mathrm{~s}<4 \mathrm{~d}<5 \mathrm{p}<6 \mathrm{~s}$
"Fill up" electrons in lowest energy orbitals first (Aufbau principle)

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (Hund's rule).

What is the electron configuration of Mg?

Mg 12 electrons $\quad 1 s<2 s<2 p<3 s<3 p<4 s$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
$[\mathrm{Ne}] 1 s^{2} 2 s^{2} 2 p^{6}$
Abbreviated as [Ne]3s s^{2}

What are the possible quantum numbers for the last (outermost) electron in CI?

Cl 17 electrons
$1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
$2+2+6+2+5=17$ electrons

Last electron added to 3p orbital

قسمזالكيمياء Department of Chemistry

$$
\mathrm{n}=3 \quad l=1 \quad \mathrm{~m}_{l}=-1,0, \text { or }+1 \quad \mathrm{~m}_{\mathrm{s}}=1 / 2 \text { or }-1 / 2
$$

Chemical Properties of Elements in Periodic Table

Atomic Radius

Ionization Energy

Electronic Affinity

Electronegativity

Atomic Radius

decreasing atomic radius

Atomic Radius

Increasing atomic radius

	$\begin{aligned} & 1 \mathrm{~A} \\ & \mathrm{H} \end{aligned}$	2 A	3A	4A	5 A	6A	7 A	8A He
	37							31
	Li)	Be	B	C	N	0	F	Ne
	152	112	85	77	70	73	72	70
	Na	Mg	AI)	Si	P)	(S)	CI	Ar
	186	160	143	118	110	103	99	98
	K	Ca	Ga	Ge	As	Se	Br	Kr
	227	197	135	123	120	117	114	112
	Rb	Sr	In	Sn	Sb	Te)	(1)	Xe
	248	215	166	140	141	143	133	131
	Cs	Ba	TI)	Pb	Bi)	PO)	At	Rn
	265	222	171	175	155	164	142	140

Atomic Radius

Cation is always smaller than atom from which it is formed.
Anion is always larger than atom from which it is formed.

Ionization Energy

The minimum energy required to remove an electron from a gaseous atom in its ground state

$$
\mathrm{M}(\mathrm{~g})+\text { energy }=\mathrm{M}^{+}+\mathrm{e}^{-}
$$

First ionization

$$
M_{(g)}+I E_{1} \longrightarrow M_{(g)}^{+}+e^{-}
$$

Second ionization

$$
M^{+}(g)+I E_{2} \longrightarrow M^{2^{+}}(g)+e^{-}
$$

Third ionization

$$
M^{2+}(g)+I E_{3} \longrightarrow M_{(g)}^{3^{+}}+e^{-}
$$

$$
I E_{1}<I E_{2}<I E_{3}
$$

Ionization Energy

Electronic Affinity

Electronic affinity is the negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion.

$$
X_{(g)}+e \longrightarrow X_{(g)}^{-}
$$

$\mathrm{F}_{(g)}+\mathrm{e}^{-} \longrightarrow \mathrm{X}_{(g)}^{-}$
$\Delta \mathrm{H}=-328 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{EA}=+328 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}=-141 \mathrm{~kJ} / \mathrm{mol}$
$E A=+141 \mathrm{~kJ} / \mathrm{mol}$

Electronic Affinity

Electronegativity

The ability of an atom to attract toward itself the electrons in a chemical bond

Chose the correct answer

1. Protons are located in the nucleus of the atom. A proton has
a) No charge
b) A negative charge
c) A positive and a negative charge
d) A positive charge
2. Neutrons are in the nucleus of the atom. A neutron has
a) A positive charge
b) No charge
c) A negative charge
d) Twice as much positive charge as a proton
3. The atoms of the same element can have different isotopes.

An isotope of an atom
a) Is an atom with a different number of protons
b) Is an atom with a different number of neutrons
c) Is an atom with a different number of electrons
d) Has a different atomic number
3. The atomic number of an atom is
a) The mass of the atom
b) The number of protons added to the number of neutrons
c) The number of protons
d) Negatively charged
5. Which one of the following sets of four quantum numbers that most likely describe the last electron of the Zn atom (Zn atomic number is 30)?
a) $\quad n=3, I=2, m_{l}=2, m s=-1 / 2$
b) $n=3, l=1, m_{l}=1, m s=+1 / 2$
c) $n=3, l=3, m_{l}=2, m s=-1 / 2$
d) $n=4, l=2, m_{l}=0, m s=+1 / 2$
e) $n=4, l=3, m_{l}=3, m s=-1 / 2$
6. Which one of the following sets of quantum numbers can correctly represent a $\mathbf{3 p}$ orbital?

a.	b.	c.	d.	e.
$n=3$	$n=1$	$n=3$	$n=3$	$n=3$
$l=1$	$I=3$	$I=2$	$I=1$	$I=0$
$m_{l}=2$	$m_{l}=3$	$m_{l}=1$	$m_{l}=-1$	$m_{l}=1$

7. True or false?

1. Electrons are found in the nucleus of an atom. False
2. Neutrons and electrons are attracted to one another. False
3.The first energy level of atom is closest to the nucleus. True

8. Fill-in-the-blank

1. Different atoms of the same element can have a different number of \qquad . neutrons
2.When an atom loses an electron, it forms a \qquad positive ion.
3.When an atom gains an electron, it forms a \qquad negative ion.

Questions

Choose the correct answer:

1- Tend to accept an electron or more:
a) Metals
b) Nonmetals
c) Metaloids
d) None of the previous

2- The minimum energy required to remove an electron from a gaseous atom in its ground state
a) Atomic radius
b) Ionization energy
c) Electronic affinity
d) Electronegativity

3- The ability of an atom to attract toward itself the electrons in a chemical bond:
a) Atomic radius
b) Ionization energy
c) Electronic affinity
d) Electronegativity

4- First ionization energy is \qquad second ionization energy.
a) equals to
b) higher than
c) lower than
d) None of the previous

Questions

Choose the correct answer:

5- The negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion:
a) Atomic radius
b) Ionization energy
c) Electronic affinity
d) Electronegativity

6- Cation is always \qquad atom from which it is formed.
a) smaller than
b) larger than
c) equal
d) none of the previous

قسمالكيمياء Department of Chemistry

7- Atoms lose electrons so that has a noblegas outer electron configuration.
a) electrons
b) cation
c) anions
d) atoms

8- The most favorable electronic configuration of $\mathrm{Fe}^{3+}(\mathrm{Fe}$ atomic number $=26)$ is:
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{5}$
b) $[A r] 4 s^{1} 3 d^{4}$
c) $[A r] 4 s^{2} 3 d^{3}$
d) $[A r] 4 s^{2} 3 d^{5}$

Questions

Choose the correct answer:

9. The electronic configuration of Aluminum (Al atomic number = 13) is:
a) $[\mathrm{Ne}] 2 s^{2} 2 p^{1}$
b) $[\mathrm{Ne}] 2 s^{1} 2 p^{2}$
c) $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
d) $[\mathrm{Ne}] 3 s^{1} 3 p^{2}$
10. The electronic configuration of Sodium (Na atomic number = 11) is:
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
b) $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{2}$
c) $1 s^{2} 2 s^{2} 2 p^{7} 3 s^{0}$
d) None of the previous

كلية العلومر التطبيقية
Faculty of Applied Sciences

Department of Chemistry

Mass relationships chanter

 Atomic and molecular weights \& moles calculationsCOURSE NAME: CHEMISTRY 101 GOURSE CODE:

Atomic Mass

The mass of an atom in atomic mass units (amu)
6 - Atomic number
C
12.01 Atomic mass

The atomic mass of elements is relative to a standard atom ${ }^{12} \mathrm{C}$ (6 protons, 6 neutrons)

Molar Mass (Atomic weight Aw)

The mass of an element atoms per one mole ($\mathrm{g} / \mathrm{mol}$) = Atomic Mass numerically

Mole (mol)

The amount of a substance that contains as many elementary particles (atoms, molecules or ions), where each mole has number of 6.022×10^{23} particles.

$$
1 \text { mole }=6.022 \times 10^{23} \text { particles }=\text { Avogadro's number } \mathrm{N}_{\mathrm{a}}
$$

$1 \mathrm{~mol} \mathrm{Al}=6.02 \times 10^{23}$ atoms
$1 \mathrm{~mol} \mathrm{CO}_{2}=6.02 \times 10^{23}$ molecules
$1 \mathrm{~mol} \mathrm{NaCl}=6.02 \times 10^{23} \mathrm{Na}^{+}$ions $=6.02 \times 10^{23} \mathrm{Cl}^{-}$ions

The number of atoms in exactly 12 g of ${ }^{12} \mathrm{C}$ is one mole

Molar Mass (Atomic weight A_{w}):

 mass (weight) of 1 mole of atoms in grams```
1 mol C atoms = 12.01 g A A of C = 12.01* g/mol
1 mol Cl atoms = 35.45 g A Aw of Cl = 35.45* g/mol
1 mol Fe atoms = 55.85g g A w of Fe = 55.85* g/mol
*(get from periodic table)
```

Think: What is the difference between the mass and weight?

## Molar Mass ( Molecular weight $\mathrm{M}_{\mathrm{w}}$ ):

The sum of atomic weights of 1 mol of the molecule

$$
\begin{aligned}
M_{w} \text { of } 1 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{O} & =2\left(A_{w} \text { of } H\right)+A_{w} \text { of } 0 \\
& =(2 \times 1.008)+16 \\
& =18.02 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$



What are the molecular weights of the following:
$\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{~N}_{2} \mathrm{O}_{4}$
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

## Number of moles ( n )

$$
n=\frac{w t(g)}{M w(g / m o l)}
$$

Remember: No. of particles $=$ No. of moles $\times$ Avogadro's number

## Example

0
Methane $\left(\mathrm{CH}_{4}\right)$ is the principal component of the natural gas. How many moles of methane are present in $6.07 \mathrm{~g}^{\text {of } \mathrm{CH}_{4} \text { ? }}$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{w}} \text { of } \mathrm{CH}_{4}=12.01+(4 \times 1.008)=16.04 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{M}_{\mathrm{w}}=16.04 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$n$ of $\mathrm{CH}_{4}=6.07 \mathrm{~g}_{(\mathrm{CH} 4)} \times\left(\frac{1 \mathrm{~mol}_{(\mathrm{CH} 4)}}{16.04 \mathrm{~g}_{(\mathrm{CH} 4)}}\right)=0.378 \mathrm{~mol}_{(\mathrm{CH} 4)}$

## Learning check



What is the number of moles in $21.5 \mathrm{~g} \mathrm{CaCO}_{3}$ ?


What is the mass in grams of $0.6 \mathrm{~mol}_{4} \mathrm{H}_{10}$ ?

How many atoms of Cu are present in 35.4 g of Cu ?

## Percent Composition of Compounds

Mass percent (weight percent) of each element in a compound.

$$
\% x=\frac{n \times A_{w}(x)}{M w} \times 100
$$

$n$ is number of atoms of each element in the compound

## Example

Calculate the mass percent of each element in ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ ?

$$
\% x=\frac{n \times A_{w}(x)}{M w} \times 100
$$

Mass of 1 mol (molar mass) of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=24.02+6.048+16.00=46.07 \mathrm{~g} / \mathrm{mol}$
Mass percent of $\mathrm{C}=\frac{2 \times 12.01 \mathrm{~g} / \mathrm{mol}}{46.07 \mathrm{~g} / \mathrm{mol}} \times 100=\underline{52.14} \% \quad(4 \mathrm{sf})$
Mass percent of $\mathrm{H}=\frac{6 \times 1.008 \mathrm{~g} / \mathrm{mol}}{46.07 \mathrm{~g} / \mathrm{mol}} \times 100=\underline{13.13} \% \quad(4 \mathrm{sf})$
Mass percent of $O=\frac{1 \times 16.00 \mathrm{~g} / \mathrm{mol}}{46.07 \mathrm{~g} / \mathrm{mol}} \times 100=\underline{34.73} \% \quad(4 \mathrm{sf})$

$$
\text { Total mass }=52.14+13.13+34.73=100 \%
$$

Percent composition


Determining the Formula of a Compound:
empirical formula $\square$ molecular formula
$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Molecular formula $=(\text { Empirical formula })_{x}$

## Question 1

Determine the number of moles of aluminum in 0.2154 kg of AI.

| A) | $1.297 \times 1023 \mathrm{~mol}$ <br> B)$\quad$$5.811 \times 103 \mathrm{~mol}$ <br> C)$\quad$7.984 mol <br> D)$\quad$0.1253 mol <br> E)$\quad 7.984 \times 10-3 \mathrm{~mol}$ |
| :--- | :--- |

## Question 2

How many phosphorus atoms are there in 2.57 g of P ?

| A) | $4.79 \times 1025$ |
| :--- | :--- |
| B) | $1.55 \times 1024$ |
| C) | $5.00 \times 1022$ |
| D) | $8.30 \times 10-2$ |
| E) | 2.57 |

## Question 3

One mole of H2
A) contains $6.0 \times 10^{23} \mathrm{H}$ atoms
B) contains $6.0 \times 10^{23} \mathrm{H}_{2}$ molecules
C) contains 1 g of $\mathrm{H}_{2}$
D) is equivalent to $6.02 \times 10^{23} \mathrm{~g}$ of $\mathrm{H}_{2}$
E) None of the above

## Question 4

How many oxygen atoms are present in 5.2 g of 02?
A) $\quad 5.4 \times 10-25$ atoms
B) $\quad 9.8 \times 1022$ atoms
C) $\quad 2.0 \times 1023$ atoms
D) $\quad 3.1 \times 1024$ atoms
E) $\quad 6.3 \times 1024$ atoms

## Question 5

How many protons and neutrons are in sulfur-33?
A) 2 protons, 16 neutrons
B) 16 protons, 31 neutrons
C) 16 protons, 17 neutrons
D) 15 protons, 16 neutrons

## Question 6

What is the mass of $5.45 \times 10-3 \mathrm{~mol}$ of glucose, C6 H12O6?
A) $\quad 0.158 \mathrm{~g}$
B) $\quad 982 \mathrm{~g}$
C) $\quad 3.31 \times 104 \mathrm{~g}$
D) $\quad 0.982 \mathrm{~g}$
E) None of the above.

## Question 7

Determine the mass percent of iron in Fe4[Fe(CN)6] 3.
A) $\quad 45 \% \mathrm{Fe}$
B)

26\% Fe
C) $\quad 33 \% \mathrm{Fe}$
D) $\quad 58 \% \mathrm{Fe}$
E) None of the above

كلية العلوم التطبيقية
Faculty of Applied Sciences


Department of Chemistry

## Chemical reaction and chemical equation <br> Chapter <br> 4

## COURSE NAME: CHEMISTRY 101

 COURSE CODE:
## Chemical Reactions

## Reactants

Products

A process in which one or more substances is changed into one or more new substances.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \longrightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
2 \mathrm{HgO}(\mathrm{~s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

## Chemical Equations

## It is a way to represent the chemical reaction.

## It shows us:

- The chemical symbols of reactants and products
- The physical states of reactants and products- (s), (I), (g), (aq)
- Balanced equation (same number of atoms on each side)



## Balancing Chemical Equations

The number of atoms of each element must be the same on both sides of the equation.
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

| Reactants | Products |
| :---: | :---: |
| 2 C | 1 C |
| 6 H | 2 H |
| 2 O | 30 |

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

| Reactants | Products |
| :---: | :---: |
| 4 C | 4 C |
| 12 H | 12 H |
| 140 | 140 |

Balance the following equations:
(a) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}$
(b) $\mathrm{CO}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
(c) $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow \mathrm{HBr}$
(d) $\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{KOH}+\mathrm{H}_{2}$
(e) $\mathrm{Mg}+\mathrm{O}_{2} \longrightarrow \mathrm{MgO}$
(f) $\mathrm{O}_{3} \longrightarrow \mathrm{O}_{2}$
(g) $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(h) $\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
(i) $\mathrm{Zn}+\mathrm{AgCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{Ag}$
(j) $\mathrm{S}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2}$

## Stoichiometry

The quantitative study of reactants and products in a chemical reaction

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

## The Mole Method:

Stoichiometric coefficients in a chemical equation can be interpreted as the number of moles of each substance.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

| $\mathrm{N}_{2}$ | 1 mole <br> $6.022 \times 10^{23}$ molecules |
| :---: | :---: |
| $\mathrm{H}_{2}$ | 3 mole |
| $\mathrm{NH}_{3}$ | $3 \times 6.022 \times 10^{23}$ molecules |
| 2 mole |  |

## Mole Ratios

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Recall that the coefficient on $N_{2}$ is 1 but is not explicitly written in the reaction Coefficients:

$$
\begin{aligned}
& \mathrm{N}_{2}=1 \\
& \mathrm{H}_{2}=3 \\
& \mathrm{NH}_{3}=2
\end{aligned}
$$

Using the coefficients we can write mole ratios
Definition: mole ratio gives the relative amounts of reactants

## Mole Ratios

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- For each 1 mole of $\mathrm{N}_{2}, 3$ moles of $\mathrm{H}_{2}$ are required.

$$
\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}}
$$

- For each 1 mole of $\mathrm{N}_{2}, 2$ moles of $\mathrm{NH}_{3}$ will be produced

$$
\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}
$$

- For 3 moles of $\mathrm{H}_{2}, 2$ moles of $\mathrm{NH}_{3}$ will be produced

$$
\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}
$$

## MOLE to MOLE Stoichiometry

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- If you are given 6 moles of $\mathrm{H}_{2}$, how many moles of $\mathrm{N}_{2}$ do you need?

$$
\frac{6 \mathrm{~mol} \mathrm{H}}{2} * * \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}}=2 \mathrm{~mol} \mathrm{~N}_{2}
$$

- If you are given 0.5 moles of $\mathrm{H}_{2}$, how many moles of $\mathrm{N}_{2}$ do you need?

$$
\frac{0.5 \mathrm{~mol} \mathrm{H}}{2} * \frac{1 \mathrm{~mol}_{2}}{3 \mathrm{~mol} \mathrm{H}}=0.2 \mathrm{~mol} \mathrm{~N}_{2}
$$

- You can flip the mole ratios around if you are asked the following: If you are given 4 moles of $\mathrm{N}_{2}$, how many moles of $\mathrm{H}_{2}$ do you need?

$$
\frac{4 \mathrm{~mol} \mathrm{~N}_{2}}{} * \frac{3 \mathrm{~mol} \mathrm{H}}{2} 1 \mathrm{~mol} \mathrm{~N}_{2} \quad=12 \mathrm{~mol} \mathrm{H}_{2}
$$

- Use the same method for finding the amount of product that will be produced. Given 6 moles of $\mathrm{H}_{2}$, how much $\mathrm{NH}_{3}$ will be made?

$$
6 \mathrm{~mol} \mathrm{H}_{2} * \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4 \mathrm{~mol} \mathrm{NH}_{3}
$$

## Example

Silicon tetrachloride $\left(\mathrm{SiCl}_{4}\right)$ can be prepared by heating Si in chlorine gas:

## $\mathbf{S i}(\mathbf{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiCl}_{4}(\mathbf{I})$

In one reaction, 0.507 mole of $\mathrm{SiCl}_{4}$ is produced. How many moles of molecular chlorine were used in the reaction?


| $\mathrm{Cl}_{2}$ | $\mathrm{SiCl}_{4}$ |
| :--- | :--- |
| 2 mol | 1 mol |
| ?? | 0.507 mol | Department of Chemistry

$$
\begin{aligned}
\mathrm{n} \text { of } \mathrm{Cl}_{2} \text { used } & =\left(0.507 \mathrm{~mol}_{\mathrm{siCl} 4} \times\left(2 \mathrm{~mol}_{\mathrm{Cl}_{2}} / 1 \mathrm{~mol}_{\mathrm{SiCl} 4}\right)\right. \\
& =1.01 \mathrm{~mol}_{\mathrm{Cl} 2}
\end{aligned}
$$

## Example

If 85.0 g of $\mathrm{CH}_{4}$ is consumed by a person over a certain period, what is the mass of $\mathrm{CO}_{2}$ produced?

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

5
Convert 85.0 g to moles:
$\mathrm{n}\left(\mathrm{CH}_{4}\right)=\mathrm{wt} / \mathrm{Mw}=(85.0 / 16.04)=5.30 \mathrm{~mol}_{(\mathrm{CH} 4)}$

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

1 mole of $\mathrm{CH}_{4} \quad 1$ mole of $\mathrm{CO}_{2}$ 5.30 moles ??
$\mathrm{n}\left(\mathrm{CO}_{2}\right)=5.30 \mathrm{~mol}_{(\mathrm{CH} 4)} \times\left(1 \mathrm{~mol}_{(\mathrm{CO2})} / 1 \mathrm{~mol}_{(\mathrm{CH4})}\right)=5.30 \mathrm{~mol}_{(\mathrm{CO} 2)}$ $\mathrm{wt}\left(\mathrm{CO}_{2}\right)=\mathrm{n} \times \mathrm{Mw}=5.30 \mathrm{~mol}_{(\mathrm{CO2})^{2}} \times\left(44.01 \mathrm{~g}_{(\mathrm{CO} 2)} / 1 \mathrm{~mol}_{(\mathrm{CO} 2)}\right)$

$$
=233.2 \mathrm{~g}=2.33 \times 10^{2} \mathrm{~g}_{(\mathrm{CO})}
$$

## Question 1

When it is correctly balanced, the correct coefficients for the equation below are
$\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{HCl}$
A) $1,3,1,1$
B) $1,3,1,3$
C) $1,1,1,3$
D) $2,3,2,3$

## Question 2

What mass of copper(II) nitrate would be produced from the complete reaction of 45.6 g of copper, according to the chemical reaction shown below?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
A) $\quad 0.72 \mathrm{~g}$
B) $\quad 21.1 \mathrm{~g}$
C) $\quad 98.7 \mathrm{~g}$
D) $\quad 135 \mathrm{~g}$
E) $\quad 187 \mathrm{~g}$

## Question 3

Calculate the number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed when 0.200 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ is treated with 0.500 mol of $\mathrm{HClO}_{3}$ according to the chemical reaction shown below.
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HClO}_{3}--->\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A) $\quad 1.00 \mathrm{~mol}$
B) $\quad 0.600 \mathrm{~mol}$
C) $\quad 0.500 \mathrm{~mol}$
D) $\quad 0.400 \mathrm{~mol}$
E) $\quad 0.200 \mathrm{~mol}$

## Question 4

What is the coefficient for CO2 when the following chemical equation is properly balanced using the smallest set of whole numbers?
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2}--->\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A) $\quad 1$
B) $\quad 4$
C) 6
D) 8
E) $\quad 12$

## Question 5

When it is correctly balanced, the correct coefficients for the equation below are
$\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O}$----> $\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{HCl}$
A) $\quad 1,3,1,1$
B) $1,3,1,3$
C) $1,1,1,3$
D) $2,3,2,3$

## Question 6

What mass of copper(II) nitrate would be produced from the complete reaction of 45.6 g of copper, according to the chemical reaction shown below?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$

| A) | 0.72 g |
| :--- | :--- |
| B) | 21.1 g |
| C) | 98.7 g |
| D) | 135 g |
| E) | 187 g |

## Question 7

Calculate the number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed when 0.200 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ is treated with 0.500 mol of $\mathrm{HClO}_{3}$ according to the chemical reaction shown below.
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HClO}_{3}--->\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A) $\quad 1.00 \mathrm{~mol}$
B) $\quad 0.600 \mathrm{~mol}$
C) $\quad 0.500 \mathrm{~mol}$
D) $\quad 0.400 \mathrm{~mol}$
E) $\quad 0.200 \mathrm{~mol}$

كلية العلومر التطبيقية
Faculty of Applied Sciences

## 0 <br> sex  <br> Department of Chemistry

## Chemical Reactionsia chanuer in Solutions \& Concentrations <br> 5

COURSE NAME: CHEMISTRY 101 GOURSE CODE:

## Solutions

Solution: a homogeneous mixture of two or more substances
Solute: a substance that is being dissolved (smaller amount)
Solvent: a substance which dissolves a solute (larger amount)

## Concentrations

The concentration of a solution is the amount of solute present in a given quantity of a solvent or solution.


## Molarity

> The number of moles of solute dissolved in one liter of solution.

## Molarity $(M)=\frac{\text { moles of solute }}{\text { liters of solution }}$

? What is the unit of molarity?
What is the relationship between weight and molarity?

## Example

A solution has a volume of 2.0 L and contains 36.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If the molar mass of glucose is 180 $\mathrm{g} / \mathrm{mol}$, what is the molarity of the solution?

No. of mol of glucose $=\mathrm{wt}(\mathrm{g}) / \mathrm{Mw}(\mathrm{g} / \mathrm{mol})=36.0 \mathrm{~g} / 180 \mathrm{~g} / \mathrm{mol}$ $=0.2 \mathrm{~mol}$
$\mathrm{M}=\mathrm{n}(\mathrm{mol}) / \mathrm{V}(\mathrm{L})=0.2 \mathrm{~mol} / 2.0 \mathrm{~L}=0.1 \mathrm{~mol} / \mathrm{L}$

## Molality

The number of moles of solute dissolved in one kilogram of solvent

## Molality (m)

$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg} \text { ) }}
$$

## Molarity (M)

$$
\boldsymbol{M}=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

## Example

## What is the molality of a 5.86 M ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ solution

 whose density is $0.927 \mathrm{~g} / \mathrm{mL}$ ?$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}
$$

Assume 1 L of solution:
5.86 moles ethanol $=270 \mathrm{~g}$ ethanol

927 g of solution ( $1000 \mathrm{~mL} \times 0.927 \mathrm{~g} / \mathrm{mL}$ )
mass of solvent $=$ mass of solution - mass of solute

$$
=927 \mathrm{~g}-270 \mathrm{~g}=657 \mathrm{~g}=0.657 \mathrm{~kg}
$$

$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}=\frac{5.86 \text { moles } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{0.657 \mathrm{~kg} \mathrm{solvent}}=8.92 \mathrm{~m}
$$

## Learning check



What is the concentration of a solution in mol/L when 80 g of calcium carbonate, $\mathrm{CaCO}_{3}$, is dissolved in 2 L of solution?


How many liters of 0.25 M NaCl solution must be measured to obtain 0.1 mol of NaCl ?

A student needs to prepare 250 ml of 0.1 M of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ solution. How many grams of cadmium nitrate are required?

# Type of Chemical Reactions in Aqueous Solutions 

1) Acid-Base Reactions
2) Oxidation-Reduction Reactions
3) Precipitation Reactions

## I. Acid-Base Reactions

## acid + base $\rightarrow$ salt + water

$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ ( I$)$

(a) Acid

(b) Base

(c) Salt

## II. Oxidation-Reduction Reactions

## Redox reactions are electron transfer reactions

$\mathrm{Mg}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Ag}$

## Half-reactions:

$\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}$
$2 \mathrm{Ag}^{+}+2 \mathrm{e} \rightarrow 2 \mathrm{Ag}$


Oxidation Reactions : half-reaction that involves a loss of electrons
Reduction Reactions : half-reaction that involves a gain of electrons

## III. Precipitation Reactions

A precipitate is an insoluble solid that separates from the solutions
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})$


## Question 1

Molarity is the number of ...... of solute dissolved

Solution
a) Grams
b) Milliliter
c) Second
d) moles

## Question 2

Molality is the number of moles of ....... dissolved in 1 kg solvent
a) Solvent
b) Solute
c) Solution
d) acid

## Question 3

Molarity is the number of moles of solute dissolved
1 ...... of the Solution
a) Grams
b) Liter
c) Second
d) moles

## Question 4

A solution has a volume of 2.0 L and contains 36.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If the molar mass of glucose is 180 $\mathrm{g} / \mathrm{mol}$, what is the molarity of the solution
a) 1.0
b) 1.00
c) 0.1
d) 0.01

## Question 5

How many liters of 0.25 M NaCl solution must be measured to obtain 0.1 mol of NaCl
A) 1
B) 2
C) 2.5
D) 3.5

## Question 6

What is the concentration of a solution in $\mathrm{mol} / \mathrm{L}$ when 80 g of calcium carbonate, $\mathrm{Ca}\left(\mathrm{CO}_{3) 2}\right.$, is dissolved in 2 L of solution? (Molecular weight of $\mathrm{Ca}(\mathrm{CO} 3) 2=100 \mathrm{~g} / \mathrm{mol}$
A) 0.4
B) 4
C) 0.004
D) 1

## Question 7

A student needs to prepare 250 ml of 0.1 M of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ solution. How many grams of cadmium nitrate are required?
(Molecular weight of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}=236 \mathrm{~g} / \mathrm{mol}$

| A) | 5.9 |
| :--- | :--- |
| B) | 5.1 |
| C) | 5.4 |
| D) | 5.6 |

كلية العلومر التطبيقية
Faculty of Applied Sciences


## COURSE NAME: CHEMISTRY 101 COURSE CODE:

## Equilibrium

Equilibrium is a state in which there are no observable changes as time goes by
Chemical equilibrium is achieved when:

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant


## Chemical equilibrium



Physical equilibrium

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Physical equilibrium is between two states of the same substance

قسم الكيمياء Department of Chemistry

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \rightleftarrows \quad 2 \mathrm{NO}_{2}(g)
$$



## Equilibrium Constant K

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows \\
\begin{aligned}
& \rightleftarrows \mathrm{NO}_{2}(g) \\
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} & K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}} \\
K= & \frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.63 \times 10^{-3} \\
a \mathrm{~A}+b \mathrm{~B} \rightleftarrows & c \mathrm{C}+d \mathrm{D} \\
K=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{\mathrm{b}}} & \text { Law of Mass Action }
\end{aligned}
\end{gathered}
$$

## Equilibrium Position

## K>>1

## Products are favored at equilibrium

(the equilibrium lie to the right)

## K<<1

## Reactants are favored at equilibrium

(the equilibrium lie to the left)


قسم الكيمياء Department of Chemistry

## Relation between $K_{c}$ and $K_{p}$

$$
\begin{array}{ccc}
\mathrm{N}_{2} \mathrm{O}_{4}(g) & \rightleftarrows \mathrm{NO}_{2}(g) \\
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} & K_{p}=\frac{P^{2}}{\mathrm{NO}_{2}} \\
\text { In most cases } \\
\mathrm{N}_{2} \mathrm{O}_{4} \neq K_{p} \\
a \mathrm{~A}(g)+b \mathrm{~B}(g) & \rightleftarrows c \mathrm{cC}(g)+d \mathrm{D}(g) \\
& K_{p}=K_{c}(R T)^{\Delta n}
\end{array}
$$

$$
\begin{aligned}
\Delta n & =\text { moles of gaseous products }- \text { moles of gaseous reactants } \\
& =(\boldsymbol{c}+\boldsymbol{d})-(\boldsymbol{a}+\boldsymbol{b})
\end{aligned}
$$

## Homogeneous Equilibrium

Homogenous equilibrium applies to reactions in which all reacting species are in the same phase.

$$
\begin{gathered}
\left.\mathrm{CH}_{3} \mathrm{COOH} \text { (aq) }+\mathrm{H}_{2} \mathrm{O}(\mathrm{II}) \mathrm{CH}_{3} \mathrm{COO} \text { (aq) }\right)+\mathrm{H}_{3} \mathrm{O}^{+} \text {(aq) } \\
K_{c}^{\prime}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=\text { constant } \\
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=K_{c}^{\prime}\left[\mathrm{H}_{2} \mathrm{O}\right]
\end{gathered}
$$

General practice not to include units for the equilibrium constant.

The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $\mathrm{COCl}_{2}(\mathrm{~g})$ at $74^{\circ} \mathrm{C}$ are $[\mathrm{CO}]=0.012 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=0.054 \mathrm{M}$, and $\left[\mathrm{COCl}_{2}\right]=0.14 \mathrm{M}$. Calculate the equilibrium constants $K_{c}$ and $K_{p}$.

$$
\begin{gathered}
\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \quad \mathrm{COCl}_{2}(g) \\
K_{c}=\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}=\frac{0.14}{0.012 \times 0.054}=220 \\
K_{p}=K_{c}(R T)^{\Delta n} \\
R=0.0821 \quad T=273+74=347 \mathrm{~K} \\
K_{p}=220 \times(0.0821 \times 347)^{-1}=7.7
\end{gathered}
$$

The equilibrium constant $K_{p}$ for the reaction:
$2 \mathrm{NO}_{2}(g) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
is 158 at 1000K. What is the equilibrium pressure of $\mathrm{O}_{2}$ if the $P_{\text {NO }}=0.400$ atm and $P_{\text {NO }}=0.270 \mathrm{~atm}$ ?

$$
\begin{gathered}
K_{p}=\frac{P_{\mathrm{NO}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{NO}_{2}}^{2}} \\
P_{\mathrm{O}_{2}}=K_{p} \frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}}^{2}} \\
P_{\mathrm{O}_{2}}=158 \times(0.400)^{2} /(0.270)^{2}=347 \mathrm{~atm}
\end{gathered}
$$

## Heterogeneous Equilibrium

Heterogenous equilibrium applies to reactions in which reactants and products are in different phases

$$
\begin{array}{r}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
K_{c}^{\prime}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]} \\
\begin{array}{l}
{\left[\mathrm{CaCO}_{3}\right]=\text { constant }} \\
{[\mathrm{CaO}]=\text { constant }}
\end{array} \\
K_{c}=\left[\mathrm{CO}_{2}\right]=K_{c}^{\prime} \times \frac{\left[\mathrm{CaCO}_{3}\right]}{[\mathrm{CaO}]}
\end{array}
$$

The concentration of solids and pure liquids are not included in the expression for the equilibrium constant.

Consider the following equilibrium at 295 K :

$$
\mathrm{NH}_{4} \mathrm{HS}(s) \rightleftarrows \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g)
$$

The partial pressure of each gas is 0.265 atm. Calculate $K_{p}$ and $K_{c}$ for the reaction?

$$
\begin{gathered}
K_{p}=P_{\mathrm{NH}_{3}} P_{\mathrm{H}_{2} \mathrm{~S}}=0.265 \times 0.265=0.0702 \\
K_{p}=K_{c}(R T)^{\Delta n} \\
K_{c}=K_{p}(R T)^{-\Delta n} \\
\Delta n=2-0=2 \quad T=295 \mathrm{~K} \\
K_{c}=0.0702 \times(0.0821 \times 295)^{-2}=1.20 \times 10^{-4}
\end{gathered}
$$

## Reaction Quotient $\mathbf{Q}_{c}$

The reaction quotient $\left(Q_{c}\right)$ is calculated by substituting the initial concentrations of the reactants and products into the equilibrium constant $\left(K_{c}\right)$ expression.

- $Q_{c}>K_{c}$ system proceeds to left to reach equilibrium
- $Q_{c}=K_{c}$ the system is at equilibrium
- $Q_{c}<K_{c}$ system proceeds to right to reach equilibrium



Equilibrium : no net change


- Find the value of Q and determine which side of the reaction is favored. Given $\mathrm{K}_{\mathrm{eq}}=0.5$ $\mathrm{HCl}(\mathrm{g})+\mathrm{NaOH}(\mathrm{aq}) \rightleftharpoons \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})$
$[\mathrm{HCl}]=3.2 \mathrm{M} \quad[\mathrm{NaOH}]=4.3 \mathrm{M} \quad[\mathrm{NaCl}]=6 \mathrm{M}$
$\mathrm{Qc}=\frac{[\mathrm{NaCl}]}{[\mathrm{HCl}][\mathrm{NaOH}]}=\frac{6}{(3.2)(4.3)}=0.436$
$Q c=0.436 \ldots \quad$... is less than $K_{\text {eq }}$ so the reaction shifts RIGHT, favors the products.


## Equilibrium Constant Calculations

- If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.

$$
\begin{array}{ccc}
\mathrm{A}+\mathrm{B} \rightleftarrows \varnothing+D & K_{c} & K_{c}^{\prime}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \\
\varnothing+\varnothing \varnothing \rightleftarrows \mathrm{E}+\mathrm{F} & K_{c}^{\prime \prime} & K_{c}^{\prime \prime}=\frac{[\mathrm{E}][\mathrm{F}]}{[\mathrm{C}][\mathrm{D}]} \\
\frac{\mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{E}+\mathrm{F}}{K_{c}} & K_{c}=\frac{[\mathrm{E}][\mathrm{F}]}{[\mathrm{A}][\mathrm{B}]}
\end{array}
$$

$$
K_{c}=K_{c}^{\prime} \times K_{c}^{\prime \prime}
$$

## Equilibrium Constant Calculations

- When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant.

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) & 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \\
K=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.63 \times 10^{-3} & K^{\prime}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{1}{K}=216
\end{array}
$$

## Le Châtelier’s Principle

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.

## I. Changes in Concentration



## Changes in Concentration continued



## Change

Increase concentration of product(s)
Decrease concentration of product(s)
Increase concentration of reactant(s)
Decrease concentration of reactant(s)

## Shifts the Equilibrium

 left rightright left

## Le Châtelier's Principle

## II. Changes in Volume and Pressure

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftarrows \mathrm{C}(\mathrm{~g})
$$

## Change

Increase pressure
Decrease pressure
Increase volume
Decrease volume

Shifts the Equilibrium
Side with fewest moles of gas Side with most moles of gas Side with most moles of gas
Side with fewest moles of gas

## Le Châtelier's Principle

## III. Temperature Changes

- Consider heat as a product in exothermic reactions

$$
A+B=A B+\text { Heat }
$$

- Add heat $\rightarrow$ Shift to reactants
- Remove heat $\rightarrow$ Shift to products

Consider heat as a reactant in endothermic reactions

$$
\begin{aligned}
& \qquad A+B+\text { heat }=A B \\
& \text { Add heat } \rightarrow \text { Shift to products } \\
& \text { Remove heat } \rightarrow \text { Shift to reactants }
\end{aligned}
$$

## Le Châtelier's Principle

- Adding a Catalyst
- does not change K
- does not shift the position of an equilibrium system
- system will reach equilibrium sooner


Reaction progress


Catalyst lowers $E_{a}$ for both forward and reverse reactions.

## Le Châtelier's Principle - Summary

| Change | Shift Equilibrium | Change Equilibrium Constant |
| :---: | :---: | :---: |
| Concentration | yes | no |
| Pressure | yes* | no |
| Volume | yes* | no |
| Temperature | yes | yes |
| Catalyst | no | no |
| *Dependent on relative moles of gaseous reactants and products |  |  |

## Question 1

Which equilibrium in gaseous phase would be unaffected by an increase in pressure:
(a) $\quad \mathrm{N}_{2} \mathrm{O}_{4}->2 \mathrm{NO}_{2}$
(b) $\mathrm{N}_{2}+\mathrm{O}_{2}->2 \mathrm{NO}$
(c) $\mathrm{N} 2+3 \mathrm{H}_{2}->2 \mathrm{NH}_{3}$
(d) $\mathrm{CO}+1 / 2 \mathrm{O}_{2}->\mathrm{O}_{2}+\mathrm{CO}_{2}$

## Question 2

For the equilibrium ,
$2 \mathrm{NO}_{2}(\mathrm{~g})->\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+14.6 \mathrm{kcal}$
An increase of temperature will:
(a) Favour the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$
(b) Favour the decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$
(c) Not affect the equilibrium
(d) Stop the reaction

## Question 3

The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the reaction is
$2 \mathrm{SO}_{3}(\mathrm{~g})->2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
system as described by the above equation is:
(a) $\left[\mathrm{SO}_{2}\right]^{2} /\left[\mathrm{SO}_{3}\right]$
(b) $\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{SO}_{3}\right]^{2}$
(c) $\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{SO}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]$
(d) $\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]$

## Question 4

At equilibrium, $\qquad$ .
(a) the rates of the forward and reverse reactions are equal
(b) the rate constants of the forward and reverse reactions are equal
(c) all chemical reactions have ceased
(d) the value of the equilibrium constant is 1

## Question 5

The value of Keq for the following reaction is 0.25 : $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})->\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
The value of Keq at the same temperature for the reaction below is $\qquad$ -.
$2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g})->2 \mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g})$
(a) 0.062
(b) 16
(c) 0.25
(d) 0.50

## Question 6

Consider the reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2$
$\mathrm{SO}_{3}(\mathrm{~g})$. If, at equilibrium at a certain temperature, $\left[\mathrm{SO}_{2}\right]=1.50 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.120 \mathrm{M}$, and $\left[\mathrm{SO}_{3}\right]=1.25$ M , what is the value of the equilibrium constant?
(a) 5.79
(b) 6.94
(c) 8.68
(d) 0.14

## Question 7

What is the correct equilibrium constant expression for the following reaction? $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})$
(a) $\mathrm{Keq}=1 /\left[\mathrm{O}_{2}\right]^{2}$
(b) $\mathrm{Keq}=[\mathrm{CuO}]^{2} /[\mathrm{Cu}]^{2}\left[\mathrm{O}_{2}\right]$
(c) $\mathrm{Keq}=\left[\mathrm{O}_{2}\right]$
(d) $\mathrm{Keq}=1 /\left[\mathrm{O}_{2}\right]$

## Question 8

What is the relationship of the equilibrium constants for the following two reactions?
(1) $2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$;
$\mathrm{K}_{1}$
(2) $\begin{gathered}\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \stackrel{\mathrm{K}}{1} \\ \mathrm{~K}_{2}\end{gathered} 2 \mathrm{NO}_{2}(\mathrm{~g})$
(a) $K_{1}=1 / K_{2}$
(b) $K_{2}=1 / K_{1}$
(c) $\mathrm{K}_{1}=\mathrm{K}_{2}$
(d) both a and b are correct

## Question 9

Consider the following endothermic reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$. If the temperature is increased,
(a) more HI will be produced
(b) some HI will decompose, forming $\mathrm{H}_{2}$ and $\mathrm{I}_{2}$
(c) the magnitude of the equilibrium constant will decrease
(d) the pressure in the container will increase

## Question 10

Consider the following reaction at equilibrium: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \leftrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$. Suppose the volume of the system is decreased at constant temperature, what change will this cause in the system?
(a) A shift to produce more NO
(b) A shift to produce more CO
(c) A shift to produce more $\mathrm{NO}_{2}$
(d) No shift will occur

## Question 11

Which of these four factors can change the value of the equilibrium constant?
(a) catalyst
(b) pressure
(c) concentration
(d) temperature

## Question 12

Which general rule helps predict the shift in direction of an equilibrium reaction?
(a) Le Chatelier's principle
(b) Haber process
(c) Equilibrium constant
(d) Bosch theory


## Acids \& Bases: pH Calculations

Chapter
7

## GOURSE NAME: CHEMISTRY 101

 COURSE CODE:
## Acids \& Bases

## Definition of acids and bases

## Arrhenius concept

## Brønsted-Lowry concept

## Lewis concept

## 1- Arrhenius Concept

An acid is a compound that releases $\mathrm{H}^{+}$ions in water A base is a compound that releases $\mathrm{OH}^{-}$in water.

$$
\begin{aligned}
\mathrm{HCl}(\mathrm{aq}) & \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{NaOH}(\mathrm{aq}) & \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

## Limitations: Some bases do not contain $\mathrm{OH}^{-}$

## 2- Brønsted-Lowry Concept

An acid is any molecule or ion that can donate a proton $\mathrm{H}^{+}$. A base is any molecule or ion can accept a proton.


 - proton-transfer reaction

$$
\begin{array}{ll}
\text { Hydrogen } & \text { Hydrogen } \\
\text { ion acceptor: } & \text { ion donor: } \\
\text { B-L base } & \text { B-L acid }
\end{array}
$$



## 3-Lewis Concept

## An acid as an electron pair acceptor and a base as an

 electron pair donor.

Another examples: hydration of $\mathrm{AlCl}_{3}, \mathrm{BCl}_{3}, \mathrm{OH}^{-}$

## Strength of Acids and Bases

A strong acid or base ionizes completely in water

| Strong Acids | Strong bases |
| :---: | :---: |
| $\mathbf{H C l}$ | LiOH |
| HBr | NaOH |
| HI | KOH |
| $\mathrm{HNO}_{3}$ | $\mathrm{Ca}(\mathrm{OH})_{2}$ |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | $\mathrm{Sr}(\mathrm{OH})_{2}$ |
| $\mathrm{HClO}_{4}$ | $\mathrm{Ba}(\mathbf{O H})_{2}$ |

## Weak Acids and Bases

A weak acid or base ionizes only to a limited extent in water

Examples: $\mathrm{CH}_{3} \mathbf{C O O H}, \mathrm{NH}_{3}$

## Acid or Base Ionization Constant

It is a measure of the strength of acid or base.
The ionization constant has the same equilibrium expression.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{HO}^{-} \\
& K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{HO}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{aligned}
$$

## Self-ionization of water

Water acts either as an acid or a base

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \quad \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{Or} \\
\mathrm{~K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
\mathrm{K}_{\mathrm{w}}=\text { water dissociation constant }
\end{gathered}
$$

## Self-ionization of water

$$
\begin{gathered}
K_{w}=\left[H^{+}\right]\left[O H^{-}\right] \\
K_{w}=1.0 \times 10^{-14} \quad \text { at } 25^{\circ} \mathrm{C} \\
{\left[H^{+}\right]=\left[O H^{-}\right]=\sqrt{1.0 \times 10^{-14}}=1.0 \times 10^{-7}}
\end{gathered}
$$

At $25^{\circ} \mathrm{C}$, you observe the following conditions. an acidic solution, $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$ a neutral solution, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$ a basic solution, $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

## pH of Solutions

The pH of a solution is defined as the negative logarithm of the molar hydrogen-ion concentration

$$
\begin{gathered}
p H=-\log \left[H^{+}\right] \\
{\left[H^{+}\right]=10^{-p H}} \\
p H+p O H=14.00
\end{gathered}
$$

In a neutral solution, whose hydrogen-ion concentration is $1.0 \times 10^{-7}$, the $\mathbf{~ p H}=\mathbf{7 . 0 0}$


## pH of Solutions

At $25^{\circ} \mathrm{C}$, you observe the following conditions

In an acidic solution, $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}, \mathrm{pH}<7$

In a neutral solution, $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}, \mathrm{pH}=7$

In a basic solution, $\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}, \mathrm{pH}>7$

## Example

For a solution in which the hydrogen-ion concentration is $1.0 \times 10-3$, the pH is:

$$
p H=-\log \left(1.0 \times 10^{-3}\right)=3.00
$$

Note that the number of decimal places in the pH equals the number of significant figures in the hydrogen-ion concentration

## Examples

The hydrogen ion concentration of a fruit juice is $3.3 \times 10^{-2} \mathrm{M}$. What is the pH of the juice? Is it acidic or basic?

$$
p H=-\log \left(3.3 \times 10^{-2}\right)=-(-1.48)=1.48
$$



If a solution has pH of 5.50 , calculate its $\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& 14=p H+p O H \\
& p O H=14.00-5.50=8.50 \\
& p O H=-\log \left[O H^{-}\right] \\
& \log \left[O H^{-}\right]=-8.50 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-8.50}=3.2 \times 10^{-9} \mathrm{M}}
\end{aligned}
$$

## pH of Strong Acids and Bases

Dissociation of a strong base:
$\mathrm{NaOH} \longrightarrow \mathrm{Na}++\mathrm{OH}-$
complete dissociation of a base and no base in the form of NaOH will be left in solution

$$
\begin{gathered}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
\mathrm{pH}=14-\mathrm{pOH}=14+\log \left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

## Example

An ammonia solution has a hydroxide-ion concentration of $1.9 \times 10-3 \mathrm{M}$. What is the pH of the solution?

You first calculate the pOH :

$$
\mathrm{pOH}=-\log \left(1.9 \times 10^{-3}\right)=2.72
$$

Then the pH is:
$\mathrm{pH}=14.00-2.72=11.28$

## pH of Weak Acids and Bases

## Dissociation of weak acids ( $\approx \mathrm{Ka}<10^{-4}$ )

Examples: $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=7.1 \times 10^{-4}, \mathrm{~K}_{\mathrm{a}}(\mathrm{HCOOH})=1.7 \times 10^{-4}$

$$
\begin{aligned}
& \underset{\mathrm{c}-\mathrm{x}}{\mathrm{HA}} \longleftrightarrow \underset{\mathrm{x}}{\mathrm{~A}^{-}+\underset{\mathrm{x}}{\mathrm{H}^{+}} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}}=\frac{\mathrm{x}^{2}}{\mathrm{c}-\mathrm{x}}=\frac{\mathrm{x}^{2}}{\mathrm{c}} \\
& \mathrm{c-x}=\text { concentration of an acid at equilibrium } \\
& \mathrm{x}=\text { concentration of products at equilibrium }
\end{aligned} \begin{aligned}
& \mathrm{c} \gg \mathrm{x} \\
& \mathrm{c}=\text { concentration of an acid at the beginning } \\
& \text { weak acids }
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]=\mathrm{x}=\left(\mathrm{K}_{\mathrm{a}} \mathrm{c}\right)^{1 / 2}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(\mathrm{K}_{\mathrm{a}} \mathrm{c}\right)^{1 / 2}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

## Question 1

The solution with the lowest pH is
A. 1.0 M HF
B. 1.0 M HCN
C. 1.0 M HCOOH
D. $1.0 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}^{2}$

## Question 2

As the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution decreases, the $\left[\mathrm{OH}^{-}\right]$
A. increases and the pH increases
B. increases and the pH decreases
C. decreases and the pH increases
D. decreases and the pH decreases

## Question 3

The value of $\mathrm{pK}{ }_{w}$ at $25^{\circ} \mathrm{C}$ is
A. $1.0 \times 10^{-14}$
B. $1.0 \times 10^{-7}$
C. 7.00
D. 14.00

Question 4
What is the pOH of 0.1 M NaOH ?
A. 1
B. 0.0032
C. 0.40
D. 13.60

## Question 5

Which of the following describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=14.00$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=14.00$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

## Question 6

The $\mathbf{p H}$ of a solution for which $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6}$ is
A. 1.00
B. 8.00
C. 6.00
D. -6.00

## Question 7

The ionization of water at room temperature is represented by
A. $\mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}^{+}+\mathrm{O}^{2-}$
B. $2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2}+\mathrm{O}_{2}$
C. $2 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+2 \mathrm{OH}^{-}$
D. $2 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

## Question 8

According to the Bronsted-Lowry theory, a base is a(n)
A. proton donorvv
B. proton acceptor
C. electron donor
D. electron acceptor

## Question 9

the pH of 1.0 M acetic acid ( Ka is $1.86 \times 10^{-5}$ at $20^{\circ} \mathrm{C}$ ).
A. 1.37
B. 2.37
C. 3.73
D. 4.73

## Question 10

## Addition of HCl to water causes

A. both $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$to increase
B. both $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$to decrease
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to increase and $\left[\mathrm{OH}^{-}\right]$to decrease
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to decrease and $\left[\mathrm{OH}^{-}\right]$to increase

## Question 11

Which of the following statements concerning Arrhenius acids and Arrhenius bases is correct?
A. In the pure state, Arrhenius acids are covalent compounds.
B. In the pure state, Arrhenius bases are ionic compounds
C. Dissociation is the process by which

Arrhenius acids produce $\mathrm{H}^{+}$ions in solution
D. Arrhenius bases are also called hydroxide bases

كلية العلومر التطبيقية
Faculty of Applied Sciences

## Chapter

## Thermochemistry


Department of Chemistry


## COURSE NAME: CHEMISTRY 101

 GOURSE CODE:
## Energy

Energy is the capacity to do work.

- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom
- Potential energy is the energy available by virtue of an object's position


## Kinds of Systems

## Open system <br> can exchange mass and energy

## Closed system

 allows the transfer of energy (heat) but not mass

Closed

Isolated system doesn't allow transfer of either mass or energy


Open

## Examples



## Thermodynamics

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy

## Heat (q)

Heat is the transfer of thermal energy between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy

Temperature $\neq$ Thermal Energy

## First Law of Thermodynamics

First Law: Energy of the Universe is Constant

$$
E=q+w
$$

$\mathrm{q}=$ heat. Transferred between two bodies
$\mathrm{w}=$ work. Force acting over a distance ( $\mathrm{F} \times \mathrm{d}$ )
$\mathrm{w}=\mathrm{Fxd}$

## Thermodynamic State Functions

- Thermodynamic State Functions: Thermodynamic properties that are dependent on the state of the system only regardless of the pathway. Examples: (Energy, pressure, volume, temperature)

$$
\begin{aligned}
& \Delta E=E_{\text {final }}-E_{\text {initial }} \\
& \Delta P=P_{\text {final }}-P_{\text {initial }} \\
& \Delta V=V_{\text {final }}-V_{\text {initial }} \\
& \Delta T=T_{\text {final }}-T_{\text {initial }}
\end{aligned}
$$

- Other variables will be dependent on pathway (Examples: $q$ and $w$ ). These are Path Functions. The pathway from one state to the other must be defined.


## Thermochemistry

Thermochemistry is the study of heat change in chemical reactions.
Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

$$
\begin{gathered}
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\text { energy } \\
\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\text { energy }
\end{gathered}
$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

$$
\begin{gathered}
\text { energy }+2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(\Lambda)+\mathrm{O}_{2}(g) \\
\text { energy }+\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)
\end{gathered}
$$

## Enthalpy of Chemical Reactions

## Definition of Enthalpy

- Thermodynamic Definition of Enthalpy (H):

$$
H=E+P V
$$

$E=$ energy of the system
$\mathrm{P}=$ pressure of the system
$\mathrm{V}=$ volume of the system

## Changes in Enthalpy ( $\Delta \mathrm{H}$ )

- Consider the following expression for a chemical process:

$$
\Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}
$$

If $\Delta H>0$, then $q_{p}>0$. (+) The reaction is endothermic

If $\Delta H<0$, then $q_{p}<0 .(-)$ The reaction is exothermic

$$
\begin{aligned}
& \Delta H=q_{p} \\
& q_{p}: \text { heat at constant pressure }
\end{aligned}
$$

Calorimetry: the measurement of heat change

## Kinds of Processes (chemical reactions or physical changes)

## Endothermic processes



## Exothermic processes



قسم الكيمياء Department of Chemistry

## Standard Enthalpy (Heat) of reaction $\left(\Delta H^{0}{ }_{r \times n}\right)$

## Enthalpy change at standard conditions ( $25^{\circ} \mathrm{C}, 1$ atm)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta H^{0}=-92.38 \mathrm{~kJ}
$$

## Thermochemical reaction

## Standard Heat of formation $\left(\Delta H_{f}^{o}\right)$

The heat change that results when 1 mol of the compound is formed from standard state of its elements

The standard enthalpy of formation of any element in its most stable form is zero.

$$
\Delta \mathrm{H}^{0}(\mathrm{C}, \text { diamond })=1.90 \mathrm{~kJ} / \mathrm{mol}
$$

What is $\Delta H_{f}^{o}$ of $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{Hg}(\mathrm{I}), \mathrm{C}($ graphite $)$ ?

## Thermochemical Equations

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta \mathrm{H}=-890.4 \mathrm{~kJ} / \mathrm{mol}$

- It shows the physical states of all products and reactants
- Balanced
- It shows Heat of reaction kJ

$$
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you reverse a reaction, the sign of $\Delta H$ changes

$$
\mathrm{H}_{2} \mathrm{O}(I \mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (S) } \quad \Delta H=-6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you multiply both sides of the equation by a factor $n$, then $\Delta H$ must change by the same factor $n$.

$$
2 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{\Lambda}) \quad \Delta H=2 \times 6.01=12.0 \mathrm{~kJ}
$$

## Question 1

## An exothermic reaction causes the surroundings

 to:A. become basic
B. decrease in temperature
C. condense
D. increase in temperature

## Question 2

Standard enthalpy of reactions can be calculated from standard enthalpies of formation of reactants.

> A. True
> B. False

## Question 3

Given: SO2(g) + $1 / 2 \mathrm{O} 2(\mathrm{~g})$----> SO3(g) $\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}=-99$ kJ , what is the enthalpy change for the following reaction? 2 SO3(g) $--->$ O2(g) + 2 SO2(g)
A. 99 kJ
B. -99 kJ
C. 49.5 kJ
D. 198 kJ

## Question 4

Energy is the ability to do work and can be:
A. converted to one form to another
B. can be created and destroyed
C. used within a system without consequences
D. none of the above

## Question 5

To which one of the following reactions, occurring at $25^{\circ} \mathrm{C}$, does the symbol $\Delta \mathrm{H}^{\circ}{ }_{f}$ $\left[\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})\right]$ refer?
A. $\mathrm{H} 2(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O} 2(\mathrm{~g})---->\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l})$
B. $\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l})---->\mathrm{H} 2(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O} 2(\mathrm{~g})$
C. $\mathrm{H} 2(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O} 2(\mathrm{~g})---->\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l})$
D. $\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l})--->2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{s})+4 \mathrm{O}(\mathrm{g})$
E. $2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{g})+4 \mathrm{O}(\mathrm{g})--->\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l})$


كلية |لعلومر (لتطبيقية Faculty of Applied Sciences


Chanter
9

Elements that exist as gases at $25^{\circ} \mathrm{C}$ and 1 atmosphere

| 1A |  |  |  |  |  |  |  |  |  |  |  | 3A | 4A | 5A | 6A | 7A | 8A | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H | 2A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | He |
| $\mathbf{L i}$ | Be | 3B | 4B | 5B | 6B | 7B | $\square 8 \mathrm{~B} \longrightarrow$ |  |  | 1B | 2B | B | C | N | O | F | Ne |
| Na | Mg |  |  |  |  |  |  |  |  | Al |  | Si | $\mathbf{P}$ | S | Cl | Ar |
| K | Ca | Sc | $\mathbf{T i}$ | V | Cr | Mn | Fe | Co | Ni |  | $\mathbf{C u}$ | Zn | Ga | Ge | As | Se | Br | $\mathbf{K r}$ |
| Rb | Sr | Y | $\mathbf{Z r}$ | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
| Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | $\mathbf{P b}$ | Bi | Po | At | Rn |
| Fr | Ra | Ac | $\mathbf{R f}$ | Db | Sg | Bh | Hs | Mt | Ds | Rg |  |  |  |  |  |  |  |

## TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

## Elements

$\mathrm{H}_{2}$ (molecular hydrogen)
$\mathrm{N}_{2}$ (molecular nitrogen)
$\mathrm{O}_{2}$ (molecular oxygen)
$\mathrm{O}_{3}$ (ozone)
$\mathrm{F}_{2}$ (molecular fluorine)
$\mathrm{Cl}_{2}$ (molecular chlorine)
He (helium)
Ne (neon)
Ar (argon)
Kr (krypton)
Xe (xenon)
Rn (radon)

## Compounds

HF (hydrogen fluoride)
HCl (hydrogen chloride)
HBr (hydrogen bromide)
HI (hydrogen iodide)
CO (carbon monoxide)
$\mathrm{CO}_{2}$ (carbon dioxide)
$\mathrm{NH}_{3}$ (ammonia)
NO (nitric oxide)
$\mathrm{NO}_{2}$ (nitrogen dioxide)
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
$\mathrm{SO}_{2}$ (sulfur dioxide)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
HCN (hydrogen cyanide)*

## Physical Characteristics of Gases

- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.


- Boyle's law: The volume of a given amount of gas held at constant temperature varies inversely with the applied pressure.


قسمזالكيمياء Department of Chemistry

$$
\begin{gathered}
P \propto 1 / V \\
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2}
\end{gathered}
$$



T = Constant
n = Constant

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg ) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{aligned}
P \times V & =\text { constant } \\
P_{1} \times V_{1} & =P_{2} \times V_{2}
\end{aligned}
$$

$$
P_{1}=726 \mathrm{mmHg}
$$

$$
P_{2}=?
$$

$$
V_{1}=946 \mathrm{~mL}
$$

$$
V_{2}=154 \mathrm{~mL}
$$

$$
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{mt}}{154 \mathrm{mt}}=4460 \mathrm{mmHg}
$$

Variation in Gas Volume with Temperature at Constant Pressure


Charles's Law: The volume of a given amount of gas held at constant pressure is directly proportional to the Kelvin temperature

$$
\begin{aligned}
& V \propto T \\
& V=\text { constant } \times T \\
& V_{1} / T_{1}=V_{2} / T_{2}
\end{aligned}
$$



Temperature must be in Kelvin

$$
T(\mathrm{~K})=t\left({ }^{\circ} \mathrm{C}\right)+273.15
$$

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
V_{1} / T_{1}=V_{2} / T_{2}
$$

$$
\begin{array}{ll}
V_{1}=3.20 \mathrm{~L} \\
T_{1}=398.15 \mathrm{~K} & \begin{array}{l}
V_{2}=1.54 \mathrm{~L} \\
T_{1}=125\left({ }^{\circ} \mathrm{C}\right)+273.15(\mathrm{~K})=398.15 \mathrm{~K}
\end{array}
\end{array}
$$


$\frac{1.54 \mathrm{~L} \times 398.15 \mathrm{~K}}{3.20 \mathrm{~L}}=192 \mathrm{~K}$

- Gay-Lussac's Law: The pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.

$$
\frac{P}{T}=\text { a constant } \quad \text { or } \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and $18{ }^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

$$
\begin{array}{lll}
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} & P_{1}=1.20 \mathrm{~atm} & P_{2}=? \\
T_{1}=291 \mathrm{~K} & T_{2}=358 \mathrm{~K}
\end{array}
$$

$$
P_{2}=P_{1} x \quad \frac{T_{2}}{T_{1}}=1.20 \mathrm{~atm} \times \quad \frac{358 \mathrm{~K}}{291 \mathrm{~K}}=1.48 \mathrm{~atm}
$$

## Summary

## LAW RELATIONSHIP

## LAW

## CONSTANT

Boyle's

$$
P \uparrow V \downarrow
$$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
T, n
$$

## Charles'

V $\uparrow \uparrow$
$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / T_{2}$
$P, n$
Gay
Lussac's
P个 T个

$$
P_{1} / T_{1}=P_{2} / T_{2}
$$

V, n
$V \alpha$ number of moles ( $n$ )
$V=$ constant x $n$

$$
V_{1} / n_{1}=V_{2} / n_{2}
$$



Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

1 mole $\mathrm{NH}_{3} \longrightarrow 1$ mole NO

## At constant $T$ and $P$

1 volume $\mathrm{NH}_{3} \longrightarrow 1$ volume NO

## Ideal Gas Equation

Boyle's law: $\mathrm{P} \alpha \frac{1}{V}$ (at constant $n$ and $T$ )
Charles' law: $V \propto T$ (at constant $n$ and $P$ )
Avogadro's law: $\mathrm{V} \alpha n$ (at constant $P$ and $T$ )
$V \alpha \frac{n T}{P}$
$V=$ constant $\mathrm{x} \frac{n T}{P}=\frac{R n T}{P}$
$R$ is the gas constant

$$
P V=n R T
$$

The conditions $0^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .

$$
P V=n R T
$$

$$
\begin{aligned}
& R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})} \\
& R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
\end{aligned}
$$



## What is the volume (in liters) occupied by 49.8 g of HCI at STP?

$$
T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}
$$

$$
P V=n R T
$$

$$
V=\frac{n R T}{P}
$$

$$
n=49.8 \mathrm{~g} \mathrm{x}
$$

$$
\frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$$
V=\frac{1.37 \text { mot } \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{atK}}{\text { mol } \mathrm{K}} \times 273.15 \mathrm{~K}}{1 \text { ath }}
$$

$$
V=30.7 \mathrm{~L}
$$

## Questions

1. Which of the following is not a characteristic of substances in the gas phase?
A)Substances in the gas phase have much lower densities than the same substances would have in the liquid or solid phase.
B)A mixture of substances in the gas phase will form a homogeneous solution, whereas the same mixture might not form a homogeneous solution in the liquid phase.
C)Substances in the gas phase retain their shapes easily.
D)Substances in the gas phase are compressible.
2. A sample of gas occupies $2.78 \times 10^{3} \mathrm{~mL}$ at $25^{\circ} \mathrm{C}$ and 760 mm Hg . What volume will the gas sample occupy at the same temperature and 475 mm Hg ?
A) 0.130 L
B) 1.04 L
C) 1.74 L
D) 4.45 L
E) None of the above
3.A steel tank contains carbon dioxide at a pressure of 13.0 atm when the temperature is $34^{\circ} \mathrm{C}$. What will be the internal gas pressure when the tank and its contents are heated to $100^{\circ} \mathrm{C}$.
A) 38.2 atm
B) 9.40 atm
C) 10.7 atm
D) 15.8 atm
E) None of the above.
4.Which of the following correctly identifies Boyle's law?
A) $P V=k_{1}$
B) $V=k_{2} T$
3. A gas evolved during the fermentation of alcohol had a volume of 19.4 L at $17^{\circ} \mathrm{C}$ and 746 mm Hg . How many moles of gas were collected?
A) 1.25 mol
B) 0.800 mol
C) 10.5 mol
D) 13.6 mol
E) 608 mol
4. How many grams of carbon dioxide are contained in 550 mL of this gas at STP?
A) 0.0245 g
B) 0.0280 g
C) 1080 g
D) 0.560 g
E) 1.1 g
5. A 1.325 g sample of an unknown vapor occupies 368 mL at $114^{\circ} \mathrm{C}$ and 946 mm Hg . The empirical formula of the compound is $\mathrm{NO}_{2}$. What is the molecular formula of the compound?
A) $\mathrm{NO}_{2}$
B) $\mathrm{N}_{4} \mathrm{O}_{8}$
C) $\mathrm{N}_{3} \mathrm{O}_{6}$
D) $\mathrm{N}_{2} \mathrm{O}_{4}$
E) $\mathrm{N}_{5} \mathrm{O}_{10}$
6. A sample of $\mathrm{CO}_{2}(\mathrm{~g})$ has a volume of 2 L at pressure P and temperature T . If the pressure becomes triple the original value, at the same absolute temperature, the volume of $\mathrm{CO}_{2}$ will be
A) $L$
B) $2 / 3 \mathrm{~L}$
C) 6 L
D) 2 L

كلية لعلومر التطبيقية
Faculty of Applied Sciences


Chapter
10

## GOURSE NAME: CHEMISTRY 101

 GOURSE CODE:
## Organic Chemistry

- The study of the compounds of carbon
- Over 10 million compounds have been identified
- about 1000 new ones are identified each day!
- C is a small atom
- it forms single, double, and triple bonds
- it is intermediate in electronegativity (2.5)
- it forms strong bonds with $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$, and some metals


## Common Elements in Organic Compounds



## Classification of Hydrocarbons

Hydrocarbons


## Alkanes

Alkanes have the general formula $\mathrm{CnH} 2 \mathrm{n}+2$ where $\mathrm{n}=1,2,3, \ldots$

1. only single covalent bonds
2. saturated hydrocarbons because they contain the maximum number of hydrogen atoms that can bond with the number of carbon atoms in the molecule

| \# of carbons | boiling point range | Use |
| :---: | :---: | :--- |
| $1-4$ | $<20^{\circ} \mathrm{C}$ | fuel (gasses such as methane, propane, butane) |
| $5-6$ | $30-60$ | solvents (petrol eum ether) |
| $6-7$ | $60-90$ | solvents (ligroin) |
| $6-12$ | $85-200$ | fuel (gasoline) |
| $12-15$ | $200-300$ | fuel (kerosene) |
| C $15-18$ | $300-400$ | fuel (heating oil) |
| ق $16-24$ | $>400$ | lubricating oil, asphalt |



Methane


Ethane


Propane

## Alkane Nomenclature

The First 10 Straight-Chain Alkanes

| Name of Hydrocarbon | The First 10 Straight-Chain Alkanes |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Molecular Formula | Number of Carbon Atoms | Melting <br> Point ( ${ }^{\circ} \mathrm{C}$ ) | Boiling <br> Point ( ${ }^{\circ} \mathrm{C}$ ) |
| Methane | $\mathrm{CH}_{4}$ | 1 | -182.5 | -161.6 |
| Ethane | $\mathrm{CH}_{3}-\mathrm{CH}_{3}$ | 2 | -183.3 | -88.6 |
| Propane | $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ | 3 | -189.7 | -42.1 |
| Butane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}$ | 4 | -138.3 | -0.5 |
| Pentane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}$ | 5 | -129.8 | 36.1 |
| Hexane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$ | 6 | -95.3 | 68.7 |
| Heptane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}$ | 7 | -90.6 | 98.4 |
| Octane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}$ | 8 | -56.8 | 125.7 |
| Nonane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}$ | 9 | -53.5 | 150.8 |
| Decane | $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{3}$ | 10 | -29.7 | 174.0 |

Each member $\mathrm{C}_{3}-\mathrm{C}_{10}$ differs by one $\mathrm{CH}_{2}$ unit. This is called a homologous series.
Methane to butane are gases at normal pressures.
Pentane to decane are liquids at normal pressures.

## Alkane Nomenclature

1. The parent name of the hydrocarbon is that given to the longest continuous chain of carbon atoms in the molecule.

2. Alkyl substituents: An alkane less
one hydrogen atom is an alkyl group.
drop the -ane and add -yl.
$-\mathrm{CH}_{3}$ : methyl
$-\mathrm{C}_{2} \mathrm{H}_{5}$ : ethyl

Formula
Name
Methyl
Ethyl
n-Propyl
n-Butyl

Isopropyl
$t$-Butyl*
$-\mathrm{CH}_{3}$ $-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

*The letter $t$ stands for tertiary.

## Alkane Nomenclature

3. When one or more hydrogen atoms are replaced by other groups, the name of the compound must indicate the locations of carbon atoms where replacements are made. Number in the direction that gives the smaller numbers for the locations of the branches.


$\gg$

## Alkane Nomenclature

4. Use prefixes di-, tri-, tetra-, when there is more than one alkyl branch of the same kind.


2,3-dimethylhexane


3,3-dimethylhexane

## Alkane Nomenclature

5. Use previous rules for other types of substituents.


1-bromo-3-nitrobutane Department of Chemistry


## TABLE

## Names of Common

Substituent Groups
Functional

| Group | Name |
| :--- | :--- |
| $-\mathrm{NH}_{2}$ | Amino |
| -F | Fluoro |
| -Cl | Chloro |
| -Br | Bromo |
| -I | Iodo |
| $-\mathrm{NO}_{2}$ | Nitro |
| $-\mathrm{CH}=\mathrm{CH}_{2}$ | Vinyl |

## Alkane Reactions

Combustion $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}^{0}=-890.4 \mathrm{~kJ}$
Halogenation $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { light }} \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$
$\mathrm{Cl}_{2}+$ energy $\longrightarrow \mathrm{Cl} \cdot+\mathrm{Cl} \cdot$


## Questions

1- Organic compounds must contain
A) Oxygen
B) Nitrogen
C) Hydrogen
D) Carbon

4- How many carbon atoms are present per molecule in the compound 3-methyl-4-ethyloctane? How many of those are present on the side chains (branches) only?
A) 11 total; 3 on branches
B) 15 total; 7 on branches
C) 12 total; 3 on branches
D) 15 total; 2 on branches

2- Which formula represents a saturated hydrocarbon? A) C2H2
B) C 3 H 8
C) C 3 H 6
D) C 2 H 4

قسمזالكيمياء Departmento of Chemistry

5- How many hydrogen atoms would be part of one molecule of pentane?
A) 5
B) 8
C) 10
D) 12

7- The general formula for the alkane series is :
A) CnHn
B) CnH 2 n
C) $\mathrm{CnH} 2 \mathrm{n}+2$
D) $\mathrm{CnH} 2 \mathrm{n}-2$

قسمזالكيمياء Departmento of Chemistry
$6-\mathrm{C} 2 \mathrm{H} 4+\mathrm{Br} 2=$ ? What reaction occurs when the above chemicals react?
A) substitution
B) Addition
C) Elimination
D) hydrolysis

8- A compound with the formula C 6 H 6 is :
A) hexane
B) pentene
C) 3-methylButane
D) Benzene

