WHAT IS CONTINUUM MECHANICS?

Continuum mechanics studies the response of
materials to different loading conditions. Its
subject matter can be divided into two main
parts:

(1) general principles common to all media and

(2) constitutive equations defining idealized
materials.

WHAT IS CONTINUUM MECHANICS?

The general principles are axioms considered to
be self-evident from our experience with the
physical world, such as conservation of mass;
the balance of linear momentum, moment of
momentum, and energy; and the entropy
inequality law.

WHAT IS CONTINUUM MECHANICS?

Mathematically, there are two equivalent forms
of the general principles: (1) the integral form,
formulated for a finite volume of material in the
continuum, and (2) the field equations for
differential volume of material (particles) at
every point of the field of interest.






Summation Convention, Dummy Indices

Consider the sum
S=ai1X) +axxz + ...+ apxXy.

We can write the preceding equation in a compact form using a

summation sign: -
§ = g aix;.
=1

The following equations have exactly the same meaning

n

n n
§ = E ai;, Ss= E Gale: F= E ag Xy .
m=| k=1

J=1

Whenever an index is repeated once, it is
a dummy index indicating a summation
with the index running through the
integral numbers 1, 2, . . ., n.

Einstein’s Summation Convention

S = (l‘.\., or S = (lj.\:l or S = (l,".\',"

n
5 = E aixXi. §=
i=1

Note that: an index should never be repeated more than
once when the summation convention is used.

n

n
E (Ij-‘jj - ;\‘ == E (l"'-\‘n'
m=1

J=1

aibr'-"i or ambnr\.m
are not defined within this convention.

n
E :a,-b,;r,-. must retain its
i=1 summation sign.



Example: If n=3, then

ax; = ayx) +axz + azxs,

The summation convention obviously can be used to express

a double sum, a triple sum, and so on. For example, we can
33

write:
ad4 = z ajjXiXj
. i=1 j=1
concisely as
AqA = au.t,xj.

L= ApXiX; = d X)Xy + X1 X + a;3X X3 + a1 XX + drnXaX; + drznaX;
+ a3 X3x) + d3X3X) + d33NzX;.
first, sum over i, and then sum over j (or vice versa), i.e.,
QjjXiXj = @|X1Xj 1 A2 X2Xj + d3jX3X],

where
@)X\ X; = @y XXy +apxxy +a;3xs,

Similarly, the indicial notation a;;x;x;x, represents a triple sum
of 27 terms, that is,

33 3
=l

E E A XXX = XXXy

i=1 j=1 k=I

Free Indices

A free index is one that appears in every expression of an equation,
except for expressions that contain real numbers (scalars) only.

Consider the following system of three equations:

' .
X =anx; + apx; +a)3x;3,
.\’5 = ay Xy + apxy + axxs,
\-: = aziX) + a;x2 + azixi.

using the summation convention, it can be written as:

X! = dimX,

- e m-sms . .

3 ) which can be shortened into v ; 5 3
Xy = Qamkm, ) X = i Xy (= 1,2,3.

! o
X3 = A3mXm,



Example: If n=3, F;=A;B,C, then
F,=A,(B,C,; + B,C; + B;Cy)
F,=A;(B,C; + B,C; + B;Cy)

F;=A;(B,C, + B,C, + B;Cy)

HW1: G,=H, (2 -3 AB) + P,QF,
HW2: A =2 + B, + C;+ D, + (F,G,- HP) E,

J

If there are two free indices appearing in an equation such as:

Tij = AimAjm s

then the equation is a shorthand for the nine equations, each
with a sum of three terms on the right-hand side.

HW: Expand T = AinAjm,

The Kronecker Delta

The Kronecker delta, denoted by o,

s [ ifi=],
W0 ifi#).

is defined as:

That is,

op=on=0on=1, 012 =013 = 021 = 023 = 031 = 03 = ().

on O o0 1 0 0
[()',j]——‘ 021 O0n Ol =10 1 0].
().3| ().32 ().33 () () l



Notes on Kronecker Delta

10 é‘i': 5

J
2. ()“' — ()]l > (”u",» ‘2 (»_!f:
= ]1+1+1
- :3
3 Oim@m = On1ay + 012a2 + d13a3 = d1a; = ay,
®

Oam@m = 021a; + 022a3 + 0p3a3 = 0ay = ay,
O3m@y = 0314y + 0324 + O033a3 = 03303 = a3,

OimQm = Q.

‘slnzTntj = (sllle +- (5|2T2j -+ (513T3j = le.
4 O2mImj = 021T1j + 00T + 02313 = Tyj,
O3mImj = 031 T1j + 03215 + 03373 = Ty;,

()imej — Tij-
[n particnlar

‘Silrt‘srrlj = ‘Slj- ‘)'im‘)‘mn‘)-nj = ‘Sijs elc.
Example: Simplify 0 0,;0;,
- é/k b/'n
= 0/(/. O



5 If e, e,, e; are unit vectors perpendicular to one another, then
Py clearly,

The Permutation Symbol

The Permutation symbol, denoted by &, is defined by:

1 form an even
s = ¢ —1 3 = according to whetheri,j, k| form an odd | permutation of 1,2, 3,
0 do not form

an =&n) =832 = +1,

i =i =3 =—l,
an=e¢m=é¢x=...=0.
We note that
Lijk = Ljki = Ekij = —Ejik = —Ekji — Cikj-

If {e,, e,, e;} is a right-handed triad, then

elx82=e3,
€,xX¢=-6;,
e,xe;=e,,

E3X82=-el,

Which can be written in a short form as

€; X €= Ejj € = Ejy; €T £y €

Now, if a=a,e; and b=b,e; , then, since the cross-product is
distributive, we have

ax b =(ae;) x (bej) = abe; x &) = ab,z;,e,

HW: Prove that

EijmEkim— Oik9j1 = Oj10jk



INDICIAL NOTATION MANIPULATIONS

Substitution: if

ai: Uimbnv (1)
and
bi:‘/imcm (11)

then, in order to substitute the b; in Eq. (ii) into the b,, in Eqg. (i), we
must first change the free index in Eq. (ii) from i to m and the
dummy index m to some other letter—say, n—so that b, =V, c,

ai —~ Uimvmncn (111)

Note that Eq. (iii) represents three equations, each having a sum of
nine terms on its right-hand side.

INDICIAL NOTATION MANIPULATIONS

Multiplication: if

p:ambm and q:Cmdm
then,
pq:ambmcndn
[t is important to note that pqg #a,b,c,d,. In fact, the right-hand side

of this expression, i.e., a,,b,,c,d,, is not even defined in the
summation convention, and further, it is obvious that

pq #= Z$n=1 ambmcmdm



Since the dot product of vectors is distributive, therefore, if a
a=ae; and b = b.e,, then

a-b=(ae)- (be)=apbe -e)
In particular, if e;, e,, e; are unit vectors perpendicular to one
another, then e; - ¢; = 0 so that

which is the familiar expression for the evaluation of the dot
product in terms of the vector components.

INDICIAL NOTATION MANIPULATIONS
Factoring: if
Tyn; - An; = 0,
then, Using Kronecker delta, we can write n; = 9;n;, so that we have

TUI’I] o /u()unj = 0.

Thus,

INDICIAL NOTATION MANIPULATIONS

Contraction: The operation of identifying two indices is known as a
contraction. Contraction indicates a sum on the index. For example,
T; is the contraction of T}; with

T; =Ty + Ty + Tss.

[

If
then



Problems for Part A



1. Given

1 0 2 1
[Si;] = [0 1 2‘ and [a;] = H
3 0 3 3
N
evaluate (a) S;,, (b) S,]S,], (©) S;iSii, (d) SpSy» (€) a
(f) S and (g) S

2. Determine which of these equations has an identical
meaning with a; = Q;.a

m m’

mn m n nm m n*

ij ]
(a) a m m
(C) am:an mn

3. Given the following matrices

i 2 3 0
la;] = 0], [Bij] = [0 5 1]
2 0 2 1

demonstrate the equivalence of subscripted equations and
corresponding matrix equations in the following two problem:

(a) b= Bljaj and [b]=[Bl][a]
(b) s=B,a.a; and s=[a]'[B][a].



ADT D TELATCNODC. FINLADR TR N\ L
RT B: TENSORS: A LINEAR TRANSF

I
AN D.

Tensors: A Linear Transformation

Let T be a transformation that transforms any vector into anothel
vector. If T transforms a into ¢ and b into d, we write Ta = ¢ anc
Tb = d.
If T has the following linear properties:
T(a+b)=Ta+Thb

T(ca) = aTa
where a and b are two arbitrary vectors and o is an arbitrary
scalar, then T is called a linear transformation. It is also called a
second-order tensor or simply a tensor.

An alternative and equivalent definition of a linear

transformation is given by the single linear property:
T(aoa + fb) = aTa + BTb

where a and b are two arbitrary vectors and o and [3 are

arbitrary scalars.



If two tensors, T and S, transform any arbitrary vector a
identically, these two tensors are the same, that is, if Ta = Sa
for any a, then T = S.

We note, however, that two different tensors may transform
specific vectors identically.

Example 1

Let T be a nonzero transformation that transforms every
vector into a fixed nonzero vector n. Is this transformation ¢

tensor?

Let a and b be any two vectors; then Ta = n and Tbh = n.
Since a + b is also a vector, therefore T(a + b) = n.
Clearly T'(a + b) does not equal Ta + Tb.

Thus, this transformation is not a linear one. In other words,
1t Is not a tensor.

Example 2

Let T be a transformation that transforms every vector into a
vector that is k times the original vector. Is this
transformation a tensor?

Let a and b be arbitrary vectors and o and p be arbitrary
scalars; then, by the definition of T,

Ta =ka, Tb=kb and T(ca + /b) = k(ca + [b)
Clearly,
T(ca + b) = aka + kb = oTa + [Tb



Therefore, T is a linear transformation. In other words, it is a
tensor.

If k=0, then the tensor transforms all vectors into a zero
vector (null vector). This tensor is the zero tensor or null
tensor and is symbolized by the boldface 0.

Example 3

Let T be a tensor that transforms the specific vectors a and b
as follows:

Ta=a + 2b;

Tb =a-b.
Given a vector ¢ = 2a + b, find Tec.
Using the linearity property of tensors, we have
Tc=T(2a+b)=2Ta+Tb=2(a+2b)+(a-b)=3a+3b



COMPONENTS OF A TENSOR

Let e, e, e, be unit vectors in the direction of the x,-, X,-,

X ,-, respectively, of a rectangular Cartesian coordinate
system. Under a transformation T, these vectors e,, e,, e,
become Te,; Te,; Te,. Each of these Te,, being a vector, can
be written as:

Tey =T, + T:|t'2 + T_ut‘}.
Tey = Tize; + Tres + Tues,
Tt‘; = Tnt‘l -+ Tnez + T3_193.

Te; = Tye,.
Te; = Tye
" COMPONENTS OF A TENSOR
The components T;; in the preceding equations are defined as the
components of the tensor T. These components can be put in a
matrix as follows: Tw T Ty Te, = Tye + Ter + Tyey
T] = TZI 'I‘:: 'l':} X Te; = Tyyey + Tyey + Tyey
T}| sz T‘.‘ Te, l|\l‘| + 7;‘(-: + Trey
This matrix is called the matrix of the tensor T-with respect to the
set of base vectors {e;}.
@ The elements of the first column in the matrix are components of the vector Te,
@ Those in the second column are the components of the vector Te,,
@ And those in the third column are the components of Te,.
Te,- . 71,','8,‘

Example 4

Obtain the matrix for the tensor T that transforms the base
vectors as follows:

Te, =4e, +e,,
Te, = 2e, + 3e;,

4 2 -1
[T]=[1 0 3}.
03 1



te=Tii 1 Example 5

Let T transform every vector into its mirror image with
respect to a fixed plane; if e, is normal to the reflection plane
(e, and e, are parallel to this plane), find a matrix of T.

Since the normal to the reflection plane is transformed into
its negative and vectors parallel to the plane are not altered,
we have

Te, =-e;,, Te,=e, Te;=g¢e,

Te, =-e;,, Te,=e, Te;=e¢,

which corresponds to -1 0 0
M=|0 1 0fy
0 0 1],

We note that this is only one of the infinitely many matrices
of the tensor T; each depends on a particular choice of base
vectors.

In the preceding matrix, the choice of e, is indicated at the
bottom-right corner of the matrix.

If we choose e’, and e’, to be on a plane perpendicular to the
mirror, with each making 45° with the mirror, as shown in
figure below, and e’; pointing straight out from the paper,

then we have "
Irror
b — b b s b b — 2 d
Te’, =¢), Te,=¢,, Tey=e; o)
=2) e1'
010
mM'=1]1 00 150
00 1], €1




Te,‘ = T,,ej

Note

Throughout this course, we denote the matrix of a tensor T
with respect to the basis {e;} by either [T] or [Tij] and with
respect to the basis {e’,} by either [T]’ or [T’,-j].

The last two matrices should not be confused with [T”],
which represents the matrix of the tensor T’ with respect to

the basis {e,}, not the matrix of T with respect to the primed
basis {e’;}.

Te,- = Tj,-ej

Te,‘ = Tj,‘Ej

Example 6
From the figure below, it is clear that e
€
Re; = costle; +sinfes,
: 0 Re;
Re, = —sintle; + cosle,,
Re3 = €3. 2 €4

which corresponds to

cost) —sind O
R] = [ sin@ cost O
0 0 1

e; l

Since e, - e, = e, - e; = e; - e; = 0 (because they are mutually
perpendicular), it can be easily verified from Eq.
Te; =Tue + Tae2 + T3e3,

Tex = Tiey + Tarey + Tazes,
Tey =Ty3e; + Tyze; + Taes,

that
Ty =e -Te,, Tip=e -Tey, Tiz=e-Tes,
T =e;-Te, Tyn=e-Te, T =e;-Te,
T;1 =e3-Te,, Txx=e3-Tey, Ti3=e3-Tes,
or

T,j =€ Te_,.



Te,- = Tj,-ej

T,’j =€- TEJ'.
Te,- = T,-;e1
T,'j =€ 'TEj.
Te,- = Tj,-ej
T,‘j =€ -Tej.

These equations are totally equivalent to:

Tey =Tne + Tyex + Tes,

Te; =Tioey + Toey +Txes, O

Te; =T3¢y + Tyzep + Taze3,
and can also be regarded as the definition of the components of a
tensor T.
They are often more convenient to use than Te; = Tje;.
We note again that the components of a tensor depend on the
coordinate systems through the set of base vectors. Thus,

T;=¢; -Tej,

where T"; are the components of the same tensor T with respect to
the base vectors {e’;}. It is important to note that vectors and
tensors are independent of coordinate systems, but their

components are dependent on the coordinate systems.

Te,» = Tj,'ej.

COMPONENTS OF A TRANSFORMED VECTOR

Given the vector a and the tensor T, which transforms a into b
(i.e., b = Ta), we wish to compute the components of b from the
components of a and the components of T.

Let the components of a with respect to {e,, e,, e;} be (a;,a,,as),
that is,

a=ae; +ane,+ase;
then

b=Ta=T(ae; + a.e,+ase;) =a,Te, + a,Te, +a;Te;

b, =b-e, =e; T(ae; + ae, +ase;) = a,(e; Te;) + ay(e; Te,) + a(e; Tes)
b, =b-e, = e, T(ase; + ase, + ase;) = a,(e,;Te,) + a(e, Te,) + as(e,Te;)
b; =b-e; = e;T(ase; + ae, + ase;) = a,(e;Te,) + ay(e;Tey) + as(e;Te;)
by =Tya, + Tppa, + Tjza;
b,=Ty,a,+ Typa, + Tsa; ... (1)
by = Ts,a; + Tspa;, + Tsa;
We can write the preceding three equations in matrix form as:

b Tw T, Typ||a
by| =T Tn Tn||a|,
b3 T3y Ty, Ty | |as

[b] = [T][a].



Te,- = Tj,'éj

T,‘j =€- Tej.
Te,‘ = T,-,-ej
T,'j =€- TEJ'.
TE,’ = Tj,'(fj
T,‘j =¢€- TEj.
Te,‘ = T,,-ej
T,'j =€- Te.,».

We can also derive Eq. (1) using indicial notations as follows:
From a = ag;e;, we get Ta = T(a,e;) = a;Te,.

Since Te; = T;;e;, b = Ta = a,T;e; so that

b,=b-e,=aTe-e —aTé' = g,

i+jivj *m i+ji i mis

that is,
b =Gl =Tbi.  eseses (2)

mI i

Example

Given that a tensor T transforms the base vectors as follows:
Te, = 2e, - 6e, + 4e,,
Te, = 3e, + 4e, - le,,
Te, =-2e, + le, + 2e,.

, N
how does this tensor transform the vector a = e, + 2e, + 3e;?

Solution:
Use the matrix equation

- 3 Y-

we obtain b = 2e; + 5e, + 8e,

SUM OF TENSORS

Let T and S be two tensors. The sum of T and S, denoted by T+S,
1s defined by

(T+S)a=Ta + Sa

for any vector a. It is easily seen that T+S, so defined, is indeed a
tensor. s

To find the components of T+S, let
W=T+S.



Te; = Tje, The components of W are

T,'j =€- Tej

that is,

Wi =T; +S;

In matrix notation, we have
[W]=[T] +[S],
and that the tensor sum is consistent with the matrix sum.



Te, = Tie; PRODUCT OF TENSORS

Tj=ei-Te;. Let T and S be two tensors and a be an arbitrary vector. Then TS
and ST are defined to be the transformations (HW: Prove that TS
and ST are both tensors) such that

(TS)a=T(Sa) and (ST)a=S(Ta).
The components of TS are
(TS); = e;(TS)e; = e, T(Se) = TS, e, = S,;e-Te, =SyT;,
that is, (TS);; = T;,,S,
Similarly, (ST); = S,

m

T

These are equivalent to matrix equation:

[TS]=[TI[S] and  [ST]=[S][T].
The two products are, in general, different. Thus, it is clear that in
general TS = ST. That is, in general, the tensor product is not
commutative.

If T, S, and V are three tensors, then, by repeatedly using the
definition, we have
(T(SV))a=T((SV)a) = T(S(Va)) and (TS)(Va) = T(S(Va)),
that is
T(SV) = TS(V) = TSV.

Thus, the tensor product is associative. It is, therefore, natural to
define the integral positive powers of a tensor by these simple

products, so that
T2 =TT, T=TTT,....



Example

(a) Let R correspond to a 90° right-hand rigid body rotation about the x;-axis.
Find the matrix of R.

(b) Let S correspond to a 90° right-hand rigid body rotation about the x,-axis.
Find the matrix of S.

(c) Find the matrix of the tensor that corresponds to the rotation R, followed by
(3 Ly

(d) Find the matrix of the tensor that corresponds to the rotation S, followed by
R.

(e) Consider a point P whose initial coordinates are (1,1,0). Find the new
position of this point after the rotations of part (c). Also find the new position
of this point after the rotations of part (d). )

Example
(a) Let R correspond to a 90° right-hand rigid body rotation about the x,-axis.
Find the matrix of R. %

l . e; "
that 1s, I 1 —_—

0 -1 0 e
Rl=]1 0 0] .
0 0 1 %

[ Re,
Re; <« » X
e



Example

(b) Let S correspond to a 90° right-hand rigid body rotation about the x,-axis.
Find the matrix of S. %

Se, = e,, Se, = e;, Se; = -e,

that is, °’I e, &
Xy

1 0 0 . e
[S]=]0 0 -1 »
0 1 0 :
[ Se,
Se;r’ X
A Se,

Example

(c) Find the matrix of the tensor that corresponds to the rotation R, followed by
S

S(Ra) = (SR)a

1 0 010 -1 010 -1 O
o0 -1l 0 ol 0 -

0 1 0JIO O 101 O O

that is,

[SR] =

Example

(d) Find the matrix of the tensor that corresponds to the rotation S, followed by
R.

R(Sa) = (RS)a

0 -1 0J]fr 0 O 0 0 1
[RS]=[1 0 0”0 0 -—l]=[1 0 O]

0O 0 1o 1 o0oJI0O 1 O

that is,



Example

(e) Consider a point P whose initial coordinates are (1,1,0). Find the new
position of this point after the rotations of part (c). Also find the new position
of this point after the rotations of part (d).

Let r be the initial position of the material point P. Let r* and rz‘* be the
rotated position of P after the rotations of part (c) and part (d), respectively.

Then
-1
0
1

-
r*=-e, +e, I

0 -1 01
[r*] = [SR][r] = [O 0 —1‘ [l‘=
1 0 0110

that is,

Example

(e) Consider a point P whose initial coordinates are (1,1,0). Find the new
position of this point after the rotations of part (c). Also find the new position
of this point after the rotations of part (d).

Let r be the initial position of the material point P. Let r* and r** be the
rotated position of P after the rotations of part (c¢) and part (d), respectively.

Then
0O O 17[17 [0
[r**] = [RS][r] = [1 0 O] [1]=[1‘
0 1 oltod 11

that is,



T(f, = 7},‘0}

T,/ =€ 'T(‘,‘.

T(f,‘ = 7},0,

Tij = e; - Te;.

TRANSPOSE OF TENSORS

The transpose of a tensor T, denoted by TT, is defined to be the tensor
that satisfies the following identity for all vectors a and b:

a-Tb=b-TTa

It can be easily seen that TT is a tensor (HW). From the preceding
definition, we have

e;Te =¢:T'e
Thus,
T; =T
or, [T]F =[T"]

that is, the matrix of T7 is the transpose of the matrix T. We also note
that
aT'™h=b(T"'a
Thus, b-Ta = b-(T")"a for any a and b, so that
(k=T

[t can be easily established that (HW)

(TS)T =STTT
That is, the transpose of a product of the tensors is equal to the product
of transposed tensors in reverse order, which is consistent with the

equivalent matrix identity. More generally,
(ABC...D)" =D'...C"BTAT

DYADIC PRODUCT OF VECTORS

The dyadic product of vectors a and b, denoted by ab, is defined to be
the transformation that transforms any vector ¢ according to the rule:

(ab)c = a(b-c).

Now, for any vectors ¢, d, and any scalars « and £, we have, from the
preceding rule,

(ab)(ac+ Ad)=a(b-(cc+/id))=a(( cb-¢)+(/b-d))=ca(b-c)*+ fa(b-d)

=a(ab)c+/(ab)d.

Thus, the dyadic product ab is a linear transformation.



Te; = Tje; Let W = ab, then the components of W are:
W =e-We, = e-(ab)e, = e-a(b-e) = a;b
Tij=¢;-Te;.
W, = ab
or,
a;by ayb, a,b; a,
(W] = [azby,  azb, azb3| = [aZI [by by bs]
asb; aszb, aszb; as
In particular, the dyadic products of the base vectors e, are:
1 0 0 0 1 0
[e;e,] = [0 0 0],[e1e2] 5= IO 0 0]
0 0 O 0 0 O
Te; = Tjie; Now, for T:
Tyy Tz Tiz T;; 0 0 0 T, 0
Tij= ¢ Te;. [T]=|T21 T2 Ta3|=|0 0 0|+|0 O 0]+
. T3y T3z Ti3 0 0 0 0O 0 O
T = Tjee;.

Thus, it is clear that any tensor T can be expressed as:

T=Tee, + T ee, +Tyee;+T,ee +..=Tee

=T TRACE OF A TENSOR

The trace of a tensor is a scalar that obeys the following rules: For any

Tij=¢;-Te;.
tensor T and S and any vectors a and b,
T = Tyeie;. tr(T+S)=tr T+ 1trS,
tr(aT)= atr T,
tr(ab) = a-b.

In terms of tensor components
' T=t(T;ee) = Ttr(ee) = T;e;-¢ = T;0; = T;

Thatis, tr T=T,, + T,, + T3; = sum of diagonal elements.

It is, therefore, obvious that tr TT =tr T.



Te; = T;e;
2 Example
T, = &-Te;. Show that for any second-order tensor A and B
tr(AB) = tr(BA)
T = Tje;e;.
Let C = AB, then C;; = A;;,B,;, so that tr(AB) = tr C = C;; = A;,B;;-
Let D = BA, then D;; = B;;A,;;, so that tr(BA) = tr D = D;; = B, A,y;;-
But B, A, = B,,jAi, (change of dummy indices); therefore, we have the
desired result
tr(AB) = tr(BA).
Te; = Tje
& IDENTITY TENSOR
N, The linear transformation that transforms every vector into itself is called
an identity tensor. Denoting this special tensor by I, we have for any
T = Tjje;e;. vector a,
Ia = a.
In particular,
Ie, = e, Ie,=e,, Ie;=e,.
Thus the (Cartesian) components of the identity tensor are:
I =e-le;= e ¢ =
Te; = Tje; that is,
Tij=¢;-Te,. 1 0 O
[I]=]0 1 ol
= T,,e,ej. 0 0 1

It is obvious that the identity matrix is the matrix of I for all rectangular
Cartesian coordinates and that TI = IT = T for any tensor T.

We also note that if Ta = a for any arbitrary a, then T = L.



Te; = Tjie;

Tij=¢;-Te;.

T= T,,e,ej.

Example

Write the tensor T, defined by the equation Ta = ca, where « is a
constant and a is arbitrary, in terms of the identity tensor, and find its
components.

We can write aa as ala, so that
Ta = aa = adla.
Since a is arbitrary, therefore,
T = al.

The components of this tensor are clearly T;; = ad;.



SCALAR FIELD AND GRADIENT OF A SCALAR FUNCTION

Let #(r) be a scalar-valued function of the position vector r. That
is, for each position r, ¢(r) gives the value of a scalar, such as
density, temperature, or electric potential at the point. In other
words, ¢(r) describes a scalar field.

Associated with a scalar field is a vector field, called the gradient
of ¢. The gradient of ¢ at a point is defined to be a vector, denoted
by grad ¢ or by V¢ such that its dot product with dr gives the
difference of the values of the scalar at r+dr and r, i.e.,

dg= Jr+dr)- fr)=V¢-ar

The Cartesian components of V¢ are d¢/dx;, that is,

%, _

= —@;
axi :

The gradient vector has a simple geometrical interpretation. V¢ is
a vector, perpendicular to the surface at the point r. :

Ar) Ve

v

grad

a scalar-valued a vector field
function




Example
If ¢ = x,x,+2x,, find a unit vector n normal to the surface of
a constant ¢ passing through the point (2,1,0).

Solution:

g g g
- — e —_— — +
V¢ ax1 e1 + 6x2 e2 -+ 6x3 e3 xzel + xlez 293

At the point (2,1,0), V¢ = e, + 2e,+ 2e3. Thus,
!

1 )
n= §(e1 + 2e, + 2e3)

Example

[f q denotes the heat flux vector (rate of heat transfer/area),
the Fourier heat conduction law states that

q = —kVO,
where O is the temperature field and k is thermal
conductivity.
IfO =2(x%+ Jfg), find 7O at the location 4 (1,0) and

B(1/V2,1/ \/E) Sketch curves of constant O (isotherms)
and indicate the vectors q at the two points.



0=2(x%+x?

q=-kVO
Solution: A(1,0) B(1/VZ,1/V2)
d0 20 20
- — _— S — +
Vo T e; + o, e, + 3%s e; = 4x;,e,+ 4x,e,

Thus,
q = —4k(x e, + x,e;),

At point A, q, = —4ke,,
and at point B, qg = —2V2k(e;+ e;)

Clearly, the isotherms are circles and the heat flux is an inward
radial vector (consistent with heat flowing from higher to lower
temperatures). 14

Example

A more general heat conduction law can be given in the following

form:
q = —KVO

where K is a tensor known as thermal conductivity tensor. (a)
What tensor K corresponds to the Fourier heat conduction law
mentioned in the previous example? (b) Find q if ©=2x,+3x,, and
2 -1 0
0 0 3




Solution:
(a) Clearly, K = KI, so that q = -kIVO = -kV0O.
(b) VO = 2e,+3e, and:

of 7

q = -e,-4e,; .
which is clearly not normal to the isotherm \

that is,

N

VECTOR FIELD AND GRADIENT OF A VECTOR FUNCTION

Let v(r) be a vector-valued function of position describing, for
example, a displacement or a velocity field. Associated with v(r),
is a tensor field, called the gradient of v, which is of considerable
importance. The gradient of v (denoted by Vv or grad v) is
defined to be the second-order tensor, which, when operating on
dr, gives the difference of v at r+dr and r. That is,

=v(r+dr) - v(r) = Vv-ar

the components of Vv in indicial notation are given by

v(r) R

. grad .

a vector-valued a tensor field
function




(Vv)ij =e;-(Vv)e; =e; -

dv._d(v-e;) dvy;

an B ax] ax,
and in matrix form,
dv, 0v; 0vq]
dx; 0x, 0x;
Jv, dv, OJv
[VV] _ 2 2 2
dx, 0x, 0x;
21173 dvy 0v,
0x, 0x, O0x3]
Ar) Vo
. grad .
a scalar-valued a vector field
function
v(r) R
* grad °
a vector-valued " a tensor field

function



DIVERGENCE OF A VECTOR FIELD AND DIVERGENCE OF A TENSOR FIELD

Let v(r) be a vector field. The divergence of v(r) is defined to be
a scalar field given by the trace of the gradient of v. That is,

[Pv] =

011 ()r,

dl(

av, ()L ()L
divv = tr(Vv) (ml I 0%,
[ dv,

In Cartesian coordinates, this gives ox, o;
. _0vy , 0v;  Odvz _ Oy B -
dlv v a 1 + 0 2 + 5x3 o ax,
av;
I divv = 7
v(r) . div v
. div -
a vector field a scalar field

Let T(r) be a tensor field. The divergence of T(r) is defined to be a
vector field, denoted by div T, such that for any vector a
(divT) - a = div(T"a) — tr(T"va).

To find the Cartesian components of the vector div T, let b = div T,
then (Note: Ve, = 0 for Cartesian coordinates), from the last equation,

we have
h,’ =b- e, =divT-e; = diV(TTe") - tr(TT ") = div(Tj‘-e,-) -0

= le(Tl}e}) = aT,,/Bx,
In other words,
<6T”->
divT = e;
axl-



T(r) | div T
div .
a tensor field a vector field
v(r) , divv
div .
a vector field a scalar field
T(r) | div T
. div .
a tensor field a vector field

Example
Let @ = a(r) and a=a(r). Show that div(ea) = adiva + (Va) -a
Solution:

Let b = aa. Then b; = aa,, so
. ab, 6(aai) aai da
divb = — =

Bx,- ax,- R ax,- 6x,-

That is,

div(eaa) = adiva+ (Va) - a




aivt = (54, Example
Let @ = a(r) and T=T(r). Show that div(aT) = T(Va) + adivT

Solution:
We have

€;

6(aTU) da aT,]
div(aT) 5%, ° e; o) ijei +a ox;

=T(Va) + adivT

LAPLACIAN OF A SCALAR FIELD

Let f(r) be a scalar-valued function of the position vector r.

The definition of the LL.aplacian of a scalar field is given by
V2f = div(Vf) = tr(V(V)).

In rectangular coordinates the Laplacian becomes
" a%r atf  a%*f 9%f
2f — — = +
ver tT(V(Vf)) dx;0x; Oxi = 0x3 Ox3

fn | v2f

a scalar field

a scalar-valued
function




Problems
(4) Consider the scalar field ¢ = x{ + 3x;x, + 2x3,

(a) Find the unit vector normal to the surface of constant
¢ at the origin and at (1,0,1).

(b) What is the maximum value of the directional
derivative of ¢ at the origin? at (1,0,1)?

Problems

(5) Consider the ellipsoidal surface defined by the equation
x2 y2 22_
Z Tt

Find the unit vector normal to the surface at a given point
(x,v,2).

Problems
(6) Consider the temperature field given by © = 3x;x,.
(a)lf q = —kVO, find the heat flux at the point A(1,1,1).

(b)If @ = —KV0, find the heat flux at the same point,
where

k 0 O
[K]=10 2k 0 ]
0 0 3k







KINEMATICS OF A CONTINUUM

In continuum mechanics, materials are generally classified
as solid and fluids, depending on their behavior when
subjected to loading.

We consider that a solid body deforms when subjected to
external forces while fluid body flows.

The study of geometric changes in a continuum without
regard to the force causing the change is known as
kinematics.

DESCRIPTION OF MOTIONS OF A CONTINUUM

In particle kinematics, the path line of a particle is described by a vector function
of time t, r=r(t), where r(t)=x,(t)e,;+x,(t)e,+x;(t)e; is the position vector. In
component form, the previous equation reads:

X1 =X1(0), X2=X5(1), X3=X5(1) :
If there are N particles, there are N path lines, each of which is described by one of
the equations:

r,=r,(t),n=1,2,3...,N

That is, for the particle number 1, the path line is given by r,(t), for the particle
number 2, it is given by ry(t), etc.



DESCRIPTION OF MOTIONS OF A CONTINUUM

For a continuum, there are infinitely many particles. Therefore, it is not possible
to identify particles by assigning each of them a number in the same way as in the
Kinematics of particles. However, it is possible to identify them by the position
they occupy at some reference time t,,.

DESCRIPTION OF MOTIONS OF A CONTINUUM

If a particle of a continuum was at the position

(X,X,,X3) at the reference time ¢, the set of

coordinates (X,,X,,X3) can be used to identity this "
particle. X
Thus, in general, the path lines of every particleina o

continuum can be described by a vector equation of the
form

x=x(X,t) with X=x(X,t,),
where x=x,e,+x,e,+x;e; is the position vector at time t
for the particle P, which was at X=X,e,+X,e,+X;e; at
time t.



DESCRIPTION OF MOTIONS OF A CONTINUUM

In component form

x; = x1(Xq, X2, X3, 0), X1 = x1(Xy, X2, X3, ),

x; = x2(Xq, X3, X3, 0), Xy = x(Xy, X2, X3, L),

x3 = x3(Xy, X3, X3, 0), X3 = x3(Xy, X2, X3, 49),
or

xi = x;(Xq,X2,X3,1), Xi = xi(Xy, X2, X3, t9),

In the first set of equations, the triple (X,,X,,X;) serves to identify the different
particles of the body and is known as the material coordinates. While both
equation above is said to define a motion for a continuum; these equations
describe the path line for every particle in the continuum.

Example 1

Consider the motion

X =X+ ktX,e,
where X = x,e, + x,e, + x3e; is the position vector at time ¢ for a
particle P that was at X = X, e, + X, e, at t=0.

Sketch the configuration at time ¢ for a body which, at t=0, has the shape
of a square of unit sides as shown. X2

o




Since x = X + ktX,e,, then

X1 = Xl + kth, Xy = Xz, X3 = X3

# X X Comments
0:(0,0,0) 0:(0,0,0) No Change
A: (1,0,0) A:(1,0,0) No Change
OA: (X;,0,0) OA: (X,,0,0) No Change
CB: (X,,1,0) C'B": (Xi+4£1,0) The material line has moved horizontally through a distance of At
0OC: (0,X;,0) OC’: (ktX3,X3,0) The fact that x,=4£X, means that the straight material line OC
remains straight line OC’ at time t
AB: (1,X;,0) AB'": (1 *lrl{;f.X;.O) Similar to OC. 9
Ykt
Since X = X + ktX,e,, then c S 8 '

X1 = Xl + kth, Xy = Xz, X3 = X3

Thus, at time ¢, the side of the square change from the square to a
parallelogram.

Since x3 = X3 at all time for all particles, it is clear that all motions are
parallel to the plane x; = 0. The motion given in this example is known
as the simple shearing motion.




MATERIAL DESCRIPTION AND SPATIAL DESCRIPTION

When a continuum is in motion, its temperature 0, its velocity v, and its stress
tensor T may change with time. We can describe these changes as follows.

1. Following the particles, i.e., we express 0, v, T as functions of the particles
[identified by the material coordinates (X,, X,, X5, t)] and time t. In other words, we
express

0 =8(X,. X, X,,t)

v =V(X, X5, X3, 1)

T = %X, X5,X5,t)

Such a description is known as the material description. Other names for it are the
Lagrangean description and the reference description.

MATERIAL DESCRIPTION AND SPATIAL DESCRIPTION

When a continuum is in motion, its temperature 0, its velocity v, and its stress
tensor T may change with time. We can describe these changes as follows.
2. Observing the changes at fixed locations, i.e., we express 0, v, T as functions of
fixed position and time. Thus,

0 = 0(xy,x,,x3,t)

vV = V(x,,x5,Xx3,t)

T="T(x;,%:.%5,%)

Such a description is known as a spatial description or Eulerian description.



Example 2

Given the motion of continuum to be

Xy =Xy +ktX;, x;=(0+kt)X;, x3=X;. (i)
If the temperature field is given by the spatial description
B 0 =a(x, +x;). (ii)

(a) Find the material description of temperature and

(b) Obtain the velocity and the rate of change of the temperature for particular
material particles and express the answer in both a material and a spatial
description.

Solution:
(a) We have
x1 =Xy +ktX,, x=QQ+kt)X,, x3=X;. (i)
0 = a(x; + x;). (ii)

Substituting Eq. (i) into Eq. (ii), we obtain the material description for the
temperature,

0 = a(x; +x;) = aX; + a(l + 2kt)X,. (iii)
[
(b) Since a particular material is designated by a specific X, its velocity will be
given by

e (ax,')
: at /xi—rixed

(iv)



X1 =X1+ktX2, Xy = (l+kt)X2, X3 =X3. (l)

dx; y
i = (af )X,'-[ixed )
So that from Eq. (i)
vy = kX;, v, =kX,, vy =0. (v)
This is material description of the velocity figld.
To obtain the spatial description, we make yse Eq. (i) again, where we have
_ X2 v
[Xz - (l+kt)] ()
Therefore, the spatial decryption for the velocity field is
_ _kx; _ _kx; -0 "
1= 00’ V2T Gern vs =1 (vii)
0 =a(x; +x) =aX; +a(l+2kt)X,. ] (iii)

4 _ X2 .
X2 = (1+kt) \ ] (vi)

From Eq. (iii), in material description, the rate of change of temperature for
particular material particles is given by

20
(;)X,--fixed = 2akX, (viii)

To obtain the spatial description, we substitute Eq. (vi) in Eq. (viii):

(60) _ 2akx,
at X;-fixed (1 + kt)



Example 3

The position at time ¢t of a particle initially at (X, X,, X;) is given by the equations
X1 =X1+k(X1+X2)t, X2=X2+k(X1+X2)t, X3=X3 (l)

(a) Find the velocity at t=2 for the particle that was at (1,1,0) at the reference
time.

(b) Find the velocity at t=2 for the particle that is at the position (1,1,0) at t=2.

Solution: X, = Xl + k(Xl + Xz)t, X9 = Xz + k(X1 + Xz)t, X3 = X3 (l)

(a) We have X1 = Xl + k(Xl +X2)t, Xy = Xz + k(Xl +X2)t, X3 = X3

_(on _ _ (a%; - o
Ul — (at )X,—fi.\'ed = k(Xl +X2)' VZ = ( - k(xl + Xz), U3 - 0 (ll)

at )X,—fi.red
For the particle (X,X,,X3)=(1,1,0), the velocity at t=2 is
vy =k(1+1) =2k, v, = k(1+1) =2k, v =0
that is,
v = 2ke, + 2ke,.
(b) We need to calculate the reference position at (X, X,, X;) that was occupied by
the particle which, at t=2, is at (x;, X,, x3)=(1,1,0). To do this, we substitute this

condition into Eq. (i) and solve for at (X, X,, X3) that is,



1+2k [ ]_ [1]
1+2k ~h

1 1
“ETT e Mt Tiame
Substituting these values in Eq. (ii),

thus,

L - - dxz o N .
vy = (W)x,-;ma k(Xy + X0y = (52 ~ )x'_/md = k(X, + X2),v3 =0 (ii)
we obtain
2k 2k _y
1T T 4k 2T T4k T



MATERIAL DERIVATIVE

The time rate of change of a quantity (such as temperature or velocity or stress
tensor) of a material particle is known as a material derivative. We shall denote
the material derivative by D/Dt:

1. When a material description of a scalar quantity is used, we have
@ = 0(X,, X5, X3, t)

Do (aé)
Dt at Xi—-fixed

MATERIAL DERIVATIVE

2. When a spatial description of the same quantity is used, we have
0=0 (Xl,x?_,x:;, t)

then

where x;, the coordinates of the present positions of material particles at time ¢
are related to material coordinates by the known motion x; = X;(X;, X5, X3,t)

De a0 a0\ ax a0\ dx 20\ a2 a0
o = (3c) S ) e )

a%, d% a® . <3
threa—t‘,a—:, and 0_13 are to be obtained with fixed values of the X,’s. When

rectangular Cartesian coordinates are used, these are the velocity components v, of
the particle X;. Thus, the material derivative in rectangular coordinates is

) _aé+v (aé)+v (aé)+v (aé)
at)y._rixea Ot 1\ax, 2\ax,/  F\ax

DO _ (aé
Dt



MATERIAL DERIVATIVE

De_(aé) _aé+v (aé)+v (aé)w (dé)
Dt~ \at Xi-fixed T ot 1 dx, 2 dx, 3 dxy

or, in indicial notation,

DO (aé) 0 . (aé)
Dt at Xi-fixed at axi

and in direct notation,

Example

Obtain DO/Dt for the motion given by
x,=X+ktX,,  x,=(1+kt) X,, x3=X;. (i)
and the temperature field is given by the spatial description
9=a(xl+,’\f2). (ii)

DO 00 ;

Solution: = -7
i il

From Example 2 (in previous lecture), we have

kx
V= (szt) (e, +e,) and ©® = a(x; + x5).

The gradient of © is simply a(e; + e;), therefore,

De_aé+ s

pe ot
1)6_0+ kx, s . el o )_Zakxz
De T TAkD iy R AMETeRI= T D



ACCELERATION OF A PARTICLE

The acceleration of a particle is the rate of change of velocity of the particle. It is,
therefore, the material derivative of velocity. If the motion of a continuum is
given by,

x=x(X,t) with X=x(Xtg)

Then the velocity v at time ¢ of a particle X is given by

0X _ Dx
V=\a 7Dt
Xi=[ixed

And the acceleration a at time t of a particle X is given by

B v _Dv
=\ ~ Dt
)

Xi=[ixed

ACCELERATION OF A PARTICLE

Thus, if the material description of velocity v(X,t) is known, then the acceleration
is very easily computed, simply taking the partial derivative with respect to time
of the function.

On the other hand, if only the spatial description of velocity [i.e., v=v(x,t)] is
known, the computation of acceleration is not as simple. We derive the formulas
for its computation in the following:

Rectangular Cartesian coordinates (x;,X,,X3). With
V= vl(xl,xZ,x:;,t)el + Uz(xl,xZ,X3,t)ez + U3(x1,xZ,X3,t)e3

we have, since the base vectors e,, e,, and e, are fixed vectors,
Dv Dvl + DUZ + DU3
A=s—=—e; +—e, +—e;
Dt Dt ' Dt * Dt °



ACCELERATION OF A PARTICLE

In component form, we have
DU,' ()U,’ 0v,~ ()U, ()UI

ai=——=—7—+17v +v +v
" Dt adt Yox, = %0x, > 0xs

or
Bv,- + avi
a; = — Vi —
! dt }de

In a form valid for all coordinates systems, we have

dv
[ a=—+ (Vv’;,v]

at

Example

Given the velocity field
_ kxy _ kxp _ kxj
W= 1+kt’ V2 = 1+kt’ w3 = 1+kt
(a) Find the acceleration field and (b) Find the path line x = X(X, t).
Solution: (a) With
kxi

1+ kt

Vi=

we have

dvi 6v,~ kle‘ kx] k5,] - kZX,' kXi

ot T U0x;  (A+k?  1+ktl+kt  (1+ k0?2 (1+kt)?

av kx kxo kx
a=—+(Fv)v v, = = L P = L V= 3
OR at 1 1+kt K 1+kt 3 1+kt

av,1 [ 9vy Ovy]
a, ot dx; 0x, 0x; v,
Q| = 212 + % aﬁ aﬁ Uz
a; at dx, 0x, 0x3 Vs

% 0 U3 0v3 003

at [dx; O0x; 0x3]

a; =

kle ) k kx

- 0 0 - k%xy kix
i (1 + kt)? 1+ kt 1+ kt T (1+k0)? (1+ktl)2
(ll = kzxz + 0 k 0 kx, k%x, kx, =0
aj | a+ke? 1+ kt 1+ kt| | (k0?2 (1::‘“)2
n.,‘ 2 k k kz -x3

_& 0 0 XB (|+:lj)2 (l+k[)2

(1+ kt)2] 1+ ktIl1 + kt



(b) Find the path line x = X(X, t). Since

<ax,') kXi
at Xi—rivea 17T kt

therefore,
*rdx; f‘ dt
x, kxi o 1+ kt
that is,
1 1
=(Inx; = InXy) =+ In(1 + kt) = In (;—) = In(1 + kt)
= X4 =(1 + kt)Xl
Similarly,

X2 =(1 + kt) X2
X3 =(1 . kt)X3

DISPLACEMENT FIELD

The displacement vector of a particle in a
continuum (identified by its material coordinate
X), from the reference position P(t;) to the current
position P(t) is given by the vector from P(t;) to
P(t) and is denoted by u(X,t)

That is,

u(X,t)= x(X,)-X

W
From the preceding equation, it is clear that
whenever the path lines of a continuum are
known, its displacement field is also known.



Example
The position at time t of a particle initially at (X,,X,,X;) is given by
x1= X1+ Xy +X2)kt, x3= Xo+ Xy +X2)kt, x3= X3
obtain the displacement field.
Solution:
uy = x; — Xy = [X; + (Xy + Xo)kt] — Xy = (X, + Xp)kt,
uz = x2 — Xz = [Xz + (Xy + X2)kt] — X2 = (X; + X2)ke,

U3=X3—X3 =X3—X3=0.

Example

The deformed configuration of a continuum is given by
x| = %X,, x2= Xz, x3= Xj3
obtain the displacement field.
Solution:
w =x; =Xy =3X - X1 = =3 X,
U, =x,— X=X, —-X, =0,

Us =X3'—X3 =X3—X3=O.

INFINITESIMAL DEFORMATION

There are many important engineering problems

that involve structural members or machine parts
for which the deformation is very small
(mathematically treated as infinitesimal). In this
section, we derive the tensor that characterizes the
deformation of such bodies.

Consider a body having a particular configuration
at some reference time t,, changes to another
configuration at time t. Referring to Figure above,
a typical material point P undergoes a
displacement u so that it arrives at the position



INFINITESIMAL DEFORMATION
x= X+ulXt) (1)

A neighboring point Q at X+dX arrives at x+dXx,
which is related to X+dX by

X+dx=X+dX+uX+dXt) (2)
Subtracting Eq. (1) from Eq. (2), we obtain
dx =dX+uX+dX,t) —ulXt) (3)

Using the definition of gradient of a vector function [dv = v(r + dr) — v(r)
= (Pv)dr], Eq. (3) becomes

dx = dX + (Vu)dX
where Vu is a second-order tensor known as the displacement gradient.

INFINITESIMAL DEFORMATION

The matrix of Vu with respect to rectangular
Cartesian coordinates (X=X,e, and u=u,e,) is

du, Jduy; Jduy)

dX, 90X, 0X;

ou, Odu, du
(Vu] = 2 2 2

X, 0X, 0dX;

duz Oduz Oduy
[0X, 0X, 0X;l




Example

Given the following displacement components u; = kX%, u, = uz = 0.

(a) Sketch the deformed shape of the unit square OABC shown in the Figure below.
(b) Find the deformed vectors (i.e., dx(!) and dx® of the material elements
dXM=dX,e, and dX®=dX,e,, which were at the point C.

(c) Determine the ratio of the deformed to the undeformed lengths of the differential
elements (known as stretch) of part (b) and the change in angle between these

x2

axi?) dxi?)
\} cAe F’*'{B.
7~/ B8

axin

L.

elements.

Xy

o A

(a) Sketch the deformed shape of the unit square OABC shown in the Figure below.
Solution: X3

For the material line OA
X,=0, therefore, u,=u,=u,=0.

That is, the line is not displaced.

For the material line CB

X,=1, therefore, u,=k, u,=u;=0.
the line is displaced by k units to the right

For the material line OC and AB,
uy =kX2, 05 =43 =0

each line becomes parabolic in shape.

Thus, the deformed shape is given by OAB’C’



(b) Find the deformed vectors (i.e., dx(") and dx® of the material elements
dX'V=dX,e, and dX?=dX,e,, which were at the point C.

Solution: X2

For the material point C, the matrix of the X el

displacement gradient is

0 2kX, 0 0 2k 0 i
[Vu]=[0 0 0 =10 0 0] e,
0 0 oy, oo o }
Therefore, for dX(V=dX,e,, from the Eq. 3 y X

dx = dX + (Vu)dX
dx(i) = dx(l) + (Vll)dx 1) = dxle, +0= dxlel

and for dX®=dX,e,
dx® = dX® + (Fu)dX @ = dX,e, + 2kdX,e, = dX;(2ke, + e;)

(¢) Determine the ratio of the deformed to the undeformed lengths of the differential
elements (known as stretch) of part (b) and the change in angle between these
elements. X;

Solution: axi2 dxi?)

From part (b), we have
dx(l) = dxlel
dx? = dX,(2ke, + e,) e,
x| = X, L.
|dx(2)| — dX2J4k2 +1 o A .

L

aXivi4

therefore,

(1) (2)

|ax(1)| |ax()]

dX(”=dX1e, and dXOhdx&




dx™ . dx@ 2k
ldx™M||dx@)| ~ V1 + 4k2

If k is very small, we have the case of small
deformations, and by the binomial theorem,
we keep only the first power of k,

2y and EDLVTT AR =~ 14 L(4h2)

|ax(1)] |ax(@)|

cosf =

and cosf = 2k

If y denotes the decrease in angle, then
n -
cosf = cos (E - y) = siny = 2k

Now, for very small k, y is also small,
so that siny = y and we have
y = 2k

(14+x)"=14+nx+
(l+x)=1+nx




STRAIN TENSOR

We know that dx = dX + (Vu)dX
=dx=((+Vu)dX = dx=FdX (1)
where F = (I + Vu), and it is called the deformation gradient.

To find the relationship between ds (the length of dx) and dS (the length of dX),
we take the dot product of Eq. (1) with itself:
dx - dx dx - dx =|FdX @

|dx||dx| a b
dx - dx
9=0=>1=de5 dx - dx = dX - FTFdX

dx - dx = ds? & ds? = dX - CdX

cosf =

T —

where C = FTF, is called the right Cauchy-Green deformation tensor.

ds? = dX - CdX
We note that if C=I, then
ds? = dX -dX
= ds’=dS°.
Therefore, C=I corresponds to a rigid body motion (translation and/or rotation).
Now, we have
F=1+Vu
~C=FTF =+ Vu)™(I+ Vu)
=1+ (Pw)N(I + Vu)
=1+|Vu+ (Vu)" + (Vu)"(Vu)
Let E* = = [Vu + (7u)T + (Vu)"(Vu)]

then, C =1+ 2E°

shows that the tensor E"characterizes the changes of lengths in the continuum due
to displacements of the material points. This tensor E* is known as the Lagrange
strain tensor. It is a finite deformation tensor.




In this section, we consider only cases where the components of the displacement
vector as well as their partial derivatives are all very small (mathematically
infinitesimal) so that the absolute value of every component of (Vu)™(Vu) is a

small quantity of higher order than those of the components of (Vu). For such
cases

C~I+2E
where
E = > [Vu + (7u)T] =Symmetric part of (Vu)

This tensor E is known as the infinitesimal strain tensor. In Cartesian coordinates

E _1 au,- au)
i =32\ax; T ax,

In matrix form

i du, 1/0u; Odu,\ 1[0u; OJu;

X, 5(@ 671) 5(6_)@+6_)(1)

mofi(fe ) e 1o, o)

2\0X, 0X, axX, 2\0X; 03X,
1/0u; O0u,\ 1[/0u; Odu, du,
i) i)

Note:

Consider two material elements dX() and dX®. Due to motion, they become dx(!)
and dx® at time .

We have, for small deformation, from dx = FdX and C = I + 2E,

dx® . dx? = FdXW . FdX® = FdX® - Fax
= dXW . FTFdX® = ax® . cax@
=dXW . (1+ 2E)dx®
that is,
dx® . dx@ = dX® . dxX@ 4 24XV . Edx®

This equation will be used in the next section to establish the meaning of the
components of the infinitesimal strain tensor E.



GEOMETRICAL MEANING OF THE COMPONENTS OF THE
INFINITESIMAL STRAIN TENSOR

(a) Diagonal elements of E.

Consider the single material element dX(=dX®=dX=dSn, where n is a unit
vector and dS is the length of dX. Due to motion, dX becomes dx with a length of
ds. Then dx( - dx® = dXM) . gX@ 4 24XV . EdX?) gives
dx-dx = dX-dX+ 2dSn - EdSn

That is, ds? = dS? + 2dS?*(n - En) (D
For small deformation,

ds? — dS% = (ds — dS)(ds + dS) = 2dS(ds — dS)
Thus, Eq. (1) gives

ds-dS
=n-En = E,, (nosum onn) )
as J
ds-ds
T n-En=E,, (nosum onn)

This equation states that the unit elongation (i.e., increase in length per unit
original length) for the element that was in the direction n, is given by n - En. In
particular, if the element was in the e, direction in the reference state, then n=e,
and e, - Ee; = g, , etc. Thus,

E,, is the unit elongation for an element originally in the x, direction.
E,, is the unit elongation for an element originally in the x, direction.
E; is the unit elongation for an element originally in the x5 direction.

These components (the diagonal elements of E) are also known as the normal
strains.



(b) The off diagonal elements of E.

Let dXV=dS,m and dX®= where m and n are unit vectors|perpendicularjto
each other. Due ion, dX) b es dx!) with length ds, and dX® becomes
dx® with length ds.
Let the angle between the ctors dx(" and dx® be denoted by 6.
Since

dx® . dx? )+ 2dX™) - EdX®
then,

ds,ds,cost = dSm-dS,n + 2dS;m - EdS;n
ds,ds,cos0 = dS,dS,(pf- n) + 2dS,dS,(m - En)

dx® . dx@ ds,ds,cos® = 2dS,dS,(m - En)
X +ax

cosf = ————r
|dx(1)||dx(2)|

dx® . dx?
ds,ds,

cosf =

If we let
m
0= E -y
then y measures the small decrease in angle between dX(!) and dX® (known as the

shear strain) due to deformation. Since
s

cos (E - y) = siny

and for small strain
ds,

siny zy,d—2z 1’d_s,~ I
therefore ds,ds;cos6 = 2dS,dS -E comes

ds, ds, 0=3 £
dSldSZCOS =2 (m-En)

y=2(m-En)
y=2(m-En)

In particular, if the elements were in the e, and e, directions before deformation,
then m - En= e, - Ee, = E,, etc,, so that, according to Equation above:

2E,, gives the decrease in angle between two elements initially in the x; and x,
dire&tions.
2E,; gives the decrease in angle between two elements initially in the x, and x,
directions.
2E,; gives the decrease in angle between two elements initially in the x, and x3
directions.



Example

Given the following displacement components
= kX2, =u3=0. k=10"*

(a) Obtain the infinitesimal strain tensor E.

(b) Using the strain tensor E, find the unit elongation for the material elements
dXV=dX e, and dX®=dX,e,, which were at the point C(0,1,0) of figure below.

Also find the decrease in angle between these two elements.

(c) Compare the results with those of the same 0

daxit

Example in the last lecture. oL _cLe B"‘|B.
axiI P
e
. ,
o A !
(a) Obtain the infinitesimal strain tensor E.
Solution:
We have
0 2kX, 0
[Pu] = [0 0 0
0 0 0
therefore,
[E] = [(7u)] = > (7u + (7))
1/[0 2kX; © 0O 0 0 0 kX, 0
[E]=§([O 0 O0|+]|2kX, 0 oD= kX, 0 0
0 0 0 0 00 0 0 0

(b) Using the strain tensor E, find the unit elongation for the material elements
dXM=dX,e, and dX@=dX,e,, which were at the point C(0,1,0) of figure below.

Also find the decrease in angle between these two elements.
Solution:

'

B

At point C, X,=1, therefore dx}
axi'

0 kX, 0][0 kK O o
El=|kx, o o[k o o L.
0 0 ollo 0 O 2

For the element dX(V=dX e, the unit elongation is E,,, which is zero.
For the element dX®®=dX,e,, the unit elongation is E,,, which is also zero.

The decrease in angle between these elements is given by 2E,,, which is equal to

2k, i.e., 2 x 10~* radians.

Xy



(c) Compare the results with those of the same Example in the last lecture.
Solution:
In the last lecture, we found that

[ax™) |ax(®) ) X
=1 and —==V4k?+ 1 and siny = 2k " .
lax ™) [ax@)| 14 ‘”‘> A -..{B_
axH “
) ax"
l.e. e,
|ax)|-|ax®)| B |ax(®)|-|ax @] _ ) 0 A o
X = 0 and xe] Vak? + 1-1
~1+4+2k?—-1=2k?=~0
and

y=2x10"*



Example

Given the displacement field

uy = k(2Xy + X?), uz = k(X3 —X?), u3=0. k=10"*

(a) Find the unit elongation and the change of angle for the two material elements
dX'M=dX,e, and dX®?=dX,e, that emanate from a particle designated by

= €, — €.
(b) Find the deformed position of these two elements: dX" and dX®.

(a) Find the unit elongation and the change of angle for the two material elements
dXM=dX,e, and dX?=dX,e, that emanate from a particle designated by

X=e,—e;.
Solution:
We evaluate [Pu] and [E] at (X;, X3, X3) = (1,—1,0) as
2k 2kX, 0 2k -2k 0
(Vu](y,-10) = |2kX, —2kX, 0 = [Zk 2k ol
0 0 0d¢1,-1,0 0 0 0

therefore, [E] = [(Vu)5] = 3 (7u + (7u)T)

1/[2k -2k 0 2k 2k O 2k 0 O
(Zk 2k 0O -2k 2k 0)= 0 2k O

[E] = .
o o o Lo o o/ lo o o

2

2k 0 0
[E] = ’ 0 2k Ol
0 0 0
Since Ey; = E,, = 2k, both elements have a unit elongation of 2 x 10~*. Further,

since Ey, = 0, these line elements remain perpendicular to each other.

(b) We know that dx = dX + (Vu)dX, so
[dx®] = [dX™] + [Pu][dXx D]

dX,] [2k -2k 0][dX,
[dx(‘)]=’ 0 |+|2k 2k ol 0
0 0 o0 ollo
dX,] [2kdX,] [dX;+ 2kdX,] 1+ 2k
[ax®M] =] o l+ 2kdX,|=| 2kdX, |=dX,| 2k
0 0 0 0




[dx@] = [dX@] + [vu][dX®]

0 2k -2k O][ ©
[ax@] = [dx,|+ |2k 2k of|dX,
0 0 o0 ollo
[ax@] = ’dX ] de)(2 = |dX, + 2kdX,| = dX; |1 + 2k
0 0
dX,] [dX; + 2kdX,]
[ax®] > [ax™] 0 |- 2kdx,
Lol | 0
(0] [ —2kdX,
[dX@] - [dx®] dX;| = |dX, + 2kdX,
Ligd L 0

The deformed position of these elements are sketched in the followi;lg figure. Note

from the diagram that

< tanq = 2KdXs 2k
astma =gy A+2k) 1+2k

and
2kdX, 2k

Btanf = A+20 —1+2k

Thus, as previously obtained, there is no T ; R

change of angle between dX("and dX® f o ‘ ‘
f ——]

~ 2k




Example

A unit cube with edges parallel to the coordinate axes is given a displacement

field

u = le, Uz =uz = 0. k= 10—4

Find the increase in length of the diagonal AB (see the figure below)

(a) by using the infinitesimal strain tensor E and (b) by geometry.

X2

A Xy
1 — k —

Solution: (a) We have u; = kX;, u; = uz = 0. Then %

k 0 0 .
Vu = [0 0 Ol, [E] = [(Vu)S] = ;(Vu + (7u)")
0 0 O

[k 0 0] [k 0 O]\ [k 0 O
[E]=;(’o 0 ol+[o 0 ol)=[o 0 0 A
0 0o lo ool oo |

Xy

11—k —

Since the diagonal element was originally in the direction n = % (e; +ey),its

unit elongation is given by

(=]

E,n=n-En=

|

i = k=X
SlnceAB—\/§=>AAB_2\/'2__‘/E

(=T

(= = ]

o OO
o3l =&l=

\ii
V2 V2




(b) Geometrically, X5

AAB = AB' — AB 1 s &
AAB =[1+(1+k)?Z-V2

AAB=[1+1+2k+k2]%—\/§ 1
AAB=[2+2k+k2]%1-\/§

AAB=\/7[1+k+§2]E—\/7 (1) Ai : o X,
Now,

1
k2|2 1 K k = k) S
[1+k+;] =1+E(k+?)+...z1+; (2) A+xy=lénx+——x'+

(l+x)~1+nx
Put (2) in (1)

AAB=\/§[1+§]—\/§=\/5+£2-\/5=L

V2 vz,
which is the same result of part (a)




